ترغب بنشر مسار تعليمي؟ اضغط هنا

Gigantic directional asymmetry of luminescence in multiferroic CuB2O4

168   0   0.0 ( 0 )
 نشر من قبل Shingo Toyoda
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report direction dependent luminescence (DDL), i.e., the asymmetry in the luminescence intensity between the opposite directions of the emission, in multiferroic CuB2O4. Although it is well known that the optical constants can change with the reversal of the propagation direction of light in multiferroic materials, the largest asymmetry in the luminescence intensity was 0.5 % so far. We have performed a measurement of photoluminescence with a He-Ne laser irradiation (633 nm). The luminescence intensity changes by about 70 % with the reversal of the magnetic field due to the interference between the electric dipole and magnetic dipole transitions. We also demonstrate the imaging of the canted antiferromagnetic domain structure of (Cu,Ni)B2O4 by using the large DDL.

قيم البحث

اقرأ أيضاً

Many technological applications are based on electric or magnetic order of materials, for instance magnetic memory. Multiferroics are materials which exhibit electric and magnetic order simultaneously. Due to the coupling of electric and magnetic eff ects, these materials show a strong potential to control electricity and magnetism and, more generally, the properties and propagation of light. One of the most fascinating and counter-intuitive recent results in multiferroics is directional anisotropy, the asymmetry of light propagation with respect to the direction of propagation. The absorption in the material can be different for forward and backward propagation of light, which in extreme case may lead to complete suppression of absorption in one direction. Another remarkable effect in multiferroics is directional birefringence, i.e. different velocities of light for different directions of propagation. In this paper, we demonstrate giant directional birefringence in a multiferroic samarium ferroborate. The effect is easily observed for linear polarization of light in the range of millimeter-wavelengths, and survives down to very low frequencies. The dispersion and absorption close to the electromagnon resonance can be controlled and fully suppressed in one direction. Therefore, samarium ferroborate is a universal tool for optical control: with a magnetic field as an external parameter it allows switching between two functionalities: polarization rotation and directional anisotropy.
AgF2 is a layered material and a correlated charge transfer insulator with an electronic structure very similar to the parent compounds of cuprate high-Tc superconductors. It is also interesting for being a powerful oxidizer. Here we present a first principles computation of its electronic properties in a slab geometry including its work function for the (010) surface (7.76 eV) which appears to be one of the highest among known materials surpassing even that of fluorinated diamond (7.24 eV). We demonstrate that AgF2 will show a broken-gap type alignment becoming electron doped and promoting injection of holes in many wide band gap insulators if chemical reaction can be avoided. Novel junction devices involving p type and n type superconductors are proposed. The issue of chemical reaction is discussed in connection with the possibility to create flat AgF2 monolayers achieving high-Tc superconductivity. As a first step in this direction, we study the stability and properties of an isolated AgF2 monolayer.
We report measurements of noncontact friction between surfaces of NbSe$_{2}$ and SrTiO$_{3}$, and a sharp Pt-Ir tip that is oscillated laterally by a quartz tuning fork cantilever. At 4.2 K, the friction coefficients on both the metallic and insulati ng materials show a giant maximum at the tip-surface distance of several nanometers. The maximum is strongly correlated with an increase in the spring constant of the cantilever. These features can be understood phenomenologically by a distance-dependent relaxation mechanism with distributed time scales.
65 - Y. Nii , R. Sasaki , Y. Iguchi 2016
We have investigated microwave nonreciprocity in a noncentro-symmetric magnet CuB2O4. We simultaneously observed differently originated nonreciprocities; the classical magnetic dipolar effect and the magneto-chiral (MCh) effect. By rotating magnetic field in a tetragonal plane, we clearly unveil qualitative difference between them. The MCh effect signal reveals chiral transitions from one enantiomer to the other via intermediate achiral state. We show magnetoelectric effect plays an essential role for the emergence of microwave MCh effect.
We propose that concurrently magnetic and ferroelectric, i.e. multiferroic, compounds endowed with electrically-active magnetic excitations (electromagnons) provide a key to produce large directional dichroism for long wavelengths of light. By exploi ting the control of ferroelectric polarization and magnetization in a multiferroic oxide Ba$_2$CoGe$_2$O$_7$, we demonstrate the realization of such a directional light-switch function at terahertz frequecies in resonance with the electromagnon absorption. Our results imply that this hidden potential is present in a broad variety of multiferroics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا