ﻻ يوجد ملخص باللغة العربية
We report measurements of noncontact friction between surfaces of NbSe$_{2}$ and SrTiO$_{3}$, and a sharp Pt-Ir tip that is oscillated laterally by a quartz tuning fork cantilever. At 4.2 K, the friction coefficients on both the metallic and insulating materials show a giant maximum at the tip-surface distance of several nanometers. The maximum is strongly correlated with an increase in the spring constant of the cantilever. These features can be understood phenomenologically by a distance-dependent relaxation mechanism with distributed time scales.
Tribology, which studies surfaces in contact and relative motion, includes friction, wear, and lubrication, straddling across different fields: mechanical engineering, materials science, chemistry, nanoscience, physics. This short review restricts to
The noncontact (van der Waals) friction is an interesting physical effect which has been the subject of controversial scientific discussion. The direct friction term due to the thermal fluctuations of the electromagnetic field leads to a friction for
Traditional laws of friction believe that the friction coefficient of two specific solids takes constant value. However, molecular simulations revealed that the friction coefficient of nanosized asperity depends strongly on contact size and asperity
AgF2 is a layered material and a correlated charge transfer insulator with an electronic structure very similar to the parent compounds of cuprate high-Tc superconductors. It is also interesting for being a powerful oxidizer. Here we present a first
We report direction dependent luminescence (DDL), i.e., the asymmetry in the luminescence intensity between the opposite directions of the emission, in multiferroic CuB2O4. Although it is well known that the optical constants can change with the reve