ﻻ يوجد ملخص باللغة العربية
We have investigated microwave nonreciprocity in a noncentro-symmetric magnet CuB2O4. We simultaneously observed differently originated nonreciprocities; the classical magnetic dipolar effect and the magneto-chiral (MCh) effect. By rotating magnetic field in a tetragonal plane, we clearly unveil qualitative difference between them. The MCh effect signal reveals chiral transitions from one enantiomer to the other via intermediate achiral state. We show magnetoelectric effect plays an essential role for the emergence of microwave MCh effect.
The electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied
We have investigated the effect of Ge-substitution to the magnetic ordering in the B20 itinerant chiral magnet MnSi prepared by melting and annealing under ambient pressure. From metallurgical survey, the solubility limit of Ge was found to be $x=0.1
We report the experimental observation of strong electrical magneto-chiral anistropy (eMChA) in trigonal tellurium (t-Te) crystals. We introduce the tensorial character of the effect and determine several tensor elements and we propose a novel intrin
In the cubic chiral magnet Fe$_{1-x}$Co$_{x}$Si a metastable state comprising of topologically nontrivial spin whirls, so-called skyrmions, may be preserved down to low temperatures by means of field cooling the sample. This metastable skyrmion state
We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local