ترغب بنشر مسار تعليمي؟ اضغط هنا

Bunching of numbers in a non-ideal roulette: the key to winning strategies

108   0   0.0 ( 0 )
 نشر من قبل Alexey Kavokin
 تاريخ النشر 2016
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Chances of a gambler are always lower than chances of a casino in the case of an ideal, mathematically perfect roulette, if the capital of the gambler is limited and the minimum and maximum allowed bets are limited by the casino. However, a realistic roulette is not ideal: the probabilities of realisation of different numbers slightly deviate. Describing this deviation by a statistical distribution with a width {delta} we find a critical {delta} that equalizes chances of gambler and casino in the case of a simple strategy of the game: the gambler always puts equal bets to the last N numbers. For up-critical {delta} the expected return of the roulette becomes positive. We show that the dramatic increase of gamblers chances is a manifestation of bunching of numbers in a non-ideal roulette. We also estimate the critical starting capital needed to ensure the low risk game for an indefinite time.



قيم البحث

اقرأ أيضاً

Advanced quantum technologies, as well as fundamental tests of quantum physics, crucially require the interference of multiple single photons in linear-optics circuits. This interference can result in the bunching of photons into higher Fock states, leading to a complex bosonic behaviour. These challenging tasks timely require to develop collective criteria to benchmark many independent initial resources. Here we determine whether n independent imperfect single photons can ultimately bunch into the Fock state $|n rangle$. We thereby introduce an experimental Fock-state bunching capability for single-photon sources, which uses phase-space interference for extreme bunching events as a quantifier. In contrast to autocorrelation functions, this operational approach takes into account not only residual multi-photon components but also vacuum admixture and the dispersion of the individual photon statistics. We apply this approach to high-purity single photons generated from an optical parametric oscillator and show that they can lead to a Fock-state capability of at least 14. Our work demonstrates a novel collective benchmark for single-photon sources and their use in subsequent stringent applications.
246 - Sascha Kurz , Joerg Rambau 2008
We propose the new Top-Dog-Index to quantify the historic deviation of the supply data of many small branches for a commodity group from sales data. On the one hand, the common parametric assumptions on the customer demand distribution in the literat ure could not at all be supported in our real-world data set. On the other hand, a reasonably-looking non-parametric approach to estimate the demand distribution for the different branches directly from the sales distribution could only provide us with statistically weak and unreliable estimates for the future demand. Based on real-world sales data from our industry partner we provide evidence that our Top-Dog-Index is statistically robust. Using the Top-Dog-Index, we propose a heuristics to improve the branch-dependent proportion between supply and demand. Our approach cannot estimate the branch-dependent demand directly. It can, however, classify the branches into a given number of clusters according to an historic oversupply or undersupply. This classification of branches can iteratively be used to adapt the branch distribution of supply and demand in the future.
We consider a random financial network with a large number of agents. The agents connect through credit instruments borrowed from each other or through direct lending, and these create the liabilities. The settlement of the debts of various agents at the end of the contract period can be expressed as solutions of random fixed point equations. Our first step is to derive these solutions (asymptotically), using a recent result on random fixed point equations. We consider a large population in which agents adapt one of the two available strategies, risky or risk-free investments, with an aim to maximize their expected returns (or surplus). We aim to study the emerging strategies when different types of replicator dynamics capture inter-agent interactions. We theoretically reduced the analysis of the complex system to that of an appropriate ordinary differential equation (ODE). We proved that the equilibrium strategies converge almost surely to that of an attractor of the ODE. We also derived the conditions under which a mixed evolutionary stable strategy (ESS) emerges; in these scenarios the replicator dynamics converges to an equilibrium at which the expected returns of both the populations are equal. Further the average dynamics (choices based on large observation sample) always averts systemic risk events (events with large fraction of defaults). We verified through Monte Carlo simulations that the equilibrium suggested by the ODE method indeed represents the limit of the dynamics.
In nature and human societies, the effects of homogeneous and heterogeneous characteristics on the evolution of collective behaviors are quite different from each other. It is of great importance to understand the underlying mechanisms of the occurre nce of such differences. By incorporating pair pattern strategies and reference point strategies into an agent-based model, we have investigated the coupled effects of heterogeneous investment strategies and heterogeneous risk tolerance on price fluctuations. In the market flooded with the investors with homogeneous investment strategies or homogeneous risk tolerance, large price fluctuations are easy to occur. In the market flooded with the investors with heterogeneous investment strategies or heterogeneous risk tolerance, the price fluctuations are suppressed. For a heterogeneous population, the coexistence of investors with pair pattern strategies and reference point strategies causes the price to have a slow fluctuation around a typical equilibrium point and both a large price fluctuation and a no-trading state are avoided, in which the pair pattern strategies push the system far away from the equilibrium while the reference point strategies pull the system back to the equilibrium. A theoretical analysis indicates that the evolutionary dynamics in the present model is governed by the competition between different strategies. The strategy that causes large price fluctuations loses more while the strategy that pulls the system back to the equilibrium gains more. Overfrequent trading does harm to ones pursuit for more wealth.
173 - Cosmo Lupo , Yingkai Ouyang 2021
Continuous-variable quantum key distribution exploits coherent measurements of the electromagnetic field, i.e., homodyne or heterodyne detection. The most advanced security analyses developed so far relied on idealised mathematical models for such me asurements, which assume that the measurement outcomes are continuous and unbounded variables. As any physical measurement device has finite range and precision, these mathematical models only serve as an approximation. It is expected that, under suitable conditions, the predictions obtained using these simplified models are in good agreement with the actual experimental implementations. However, a quantitative analysis of the error introduced by this approximation, and of its impact on composable security, have been lacking so far. Here we present a theory to rigorously account for the experimental limitations of realistic heterodyne detection. We focus on asymptotic security against collective attacks, and indicate a route to include finite-size effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا