ﻻ يوجد ملخص باللغة العربية
Continuous-variable quantum key distribution exploits coherent measurements of the electromagnetic field, i.e., homodyne or heterodyne detection. The most advanced security analyses developed so far relied on idealised mathematical models for such measurements, which assume that the measurement outcomes are continuous and unbounded variables. As any physical measurement device has finite range and precision, these mathematical models only serve as an approximation. It is expected that, under suitable conditions, the predictions obtained using these simplified models are in good agreement with the actual experimental implementations. However, a quantitative analysis of the error introduced by this approximation, and of its impact on composable security, have been lacking so far. Here we present a theory to rigorously account for the experimental limitations of realistic heterodyne detection. We focus on asymptotic security against collective attacks, and indicate a route to include finite-size effects.
Most quantum key distribution (QKD) protocols could be classified as either a discrete-variable (DV) protocol or continuous-variable (CV) protocol, based on how classical information is being encoded. We propose a protocol that combines the best of b
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution sc
The ping-pong protocol adapted for quantum key distribution is studied in the trusted quantum noise scenario, wherein the legitimate parties can add noise locally. For a well-studied attack model, we show how non-unital quantum non-Markovianity of th
This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduc
We propose a new Quantum Key Distribution method in which Alice sends pairs of qubits to Bob, each in one of four possible states. Bob uses one qubit to generate a secure key and the other to generate an auxiliary key. For each pair he randomly decid