ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Fock-State Bunching Capability of Non-Ideal Single-Photon States

105   0   0.0 ( 0 )
 نشر من قبل Julien Laurat
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advanced quantum technologies, as well as fundamental tests of quantum physics, crucially require the interference of multiple single photons in linear-optics circuits. This interference can result in the bunching of photons into higher Fock states, leading to a complex bosonic behaviour. These challenging tasks timely require to develop collective criteria to benchmark many independent initial resources. Here we determine whether n independent imperfect single photons can ultimately bunch into the Fock state $|n rangle$. We thereby introduce an experimental Fock-state bunching capability for single-photon sources, which uses phase-space interference for extreme bunching events as a quantifier. In contrast to autocorrelation functions, this operational approach takes into account not only residual multi-photon components but also vacuum admixture and the dispersion of the individual photon statistics. We apply this approach to high-purity single photons generated from an optical parametric oscillator and show that they can lead to a Fock-state capability of at least 14. Our work demonstrates a novel collective benchmark for single-photon sources and their use in subsequent stringent applications.



قيم البحث

اقرأ أيضاً

Heralded single photons are prepared at a rate of ~100 kHz via conditional measurements on polarization-nondegenerate biphotons produced in a periodically poled KTP crystal. The single-photon Fock state is characterized using high frequency pulsed op tical homodyne tomography with a fidelity of (57.6 +- 0.1)%. The state preparation and detection rates allowed us to perform on-the-fly alignment of the apparatus based on real-time analysis of the quadrature measurement statistics.
A BosonSampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal non-classical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources b ased on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. BosonSampling with only single-photon input has thus never been realised. Here, we report on a BosonSampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially-indistinguishable single-photons, with a single-photon purity $1{-}g^{(2)}(0)$ of $0.990{pm}0.001$, interfering in a linear optics network. Our demultiplexed source is between one and two orders-of-magnitude more efficient than current heralded multi-photon sources based on spontaneous parametric downconversion, allowing us to complete the BosonSampling experiment faster than previous equivalent implementations.
Superradiance in an ensemble of atoms leads to the collective enhancement of radiation in a particular mode shared by the atoms in their spontaneous decay from an excited state. The quantum aspects of this phenomenon are highlighted when such collect ive enhancement is observed in the emission of a single quantum of light. Here we report a further step in exploring experimentally the nonclassical features of superradiance by implementing the process not only with single excitations, but also in a two-excitations state. Particularly we measure and theoretically model the wave-packets corresponding to superradiance in both the single-photon and two-photons regimes. Such progress opens the way to the study and future control of the interaction of nonclassical light modes with collective quantum memories at higher photon numbers.
We introduce and experimentally explore the concept of quantum non-Gaussian depth of single-photon states with a positive Wigner function. The depth measures the robustness of a single-photon state against optical losses. The directly witnessed quant um non-Gaussianity withstands significant attenuation, exhibiting a depth of 18 dB, while the nonclassicality remains unchanged. Quantum non-Gaussian depth is an experimentally approachable quantity that is much more robust than the negativity of the Wigner function. Furthermore, we use it to reveal significant differences between otherwise strongly nonclassical single-photon sources.
We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two ph otons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا