ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Throughput ab-initio Dilute Solute Diffusion Database

63   0   0.0 ( 0 )
 نشر من قبل Henry Wu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.



قيم البحث

اقرأ أيضاً

While the ongoing search to discover new high-entropy systems is slowly expanding beyond metals, a rational and effective method for predicting in silico the solid solution forming ability of multi-component systems remains yet to be developed. In th is article, we propose a novel high-throughput approach, called LTVC, for estimating the transition temperature of a solid solution: ab-initio energies are incorporated into a mean field statistical mechanical model where an order parameter follows the evolution of disorder. The LTVC method is corroborated by Monte Carlo simulations and the results from the current most reliable data for binary, ternary, quaternary and quinary systems (96.6%; 90.7%; 100% and 100%, of correct solid solution predictions, respectively). By scanning through the many thousands of systems available in the AFLOW consortium repository, it is possible to predict a plethora of previously unknown potential quaternary and quinary solid solutions for future experimental validation.
The spin Hall effect (SHE) is an important spintronics phenomenon, which allows transforming a charge current into a spin current and vice versa without the use of magnetic materials or magnetic fields. To gain new insight into the physics of the SHE and to identify materials with a substantial spin Hall conductivities (SHC), we performed high-precision, high-throughput ab initio electronic structure calculations of the intrinsic SHC for over 20,000 non-magnetic crystals. The calculations reveal a strong and unexpected relation of the magnitude of the SHC with the crystalline symmetry, which we show exists because large SHC is typically associated with mirror symmetry protected nodal lines in the band structure. From the new developed database, we identify new promising materials. This includes eleven materials with a SHC comparable or even larger than that the up to now record Pt as well as materials with different types of spin currents, which could allow for new types of spin-obitronics devices.
While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The root o f this lies in the strong distortion N atoms exert on most host materials. Here, we resolve these issues by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, we show that the distortion field of a single N atom must be allowed to decrease so far, that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing to compute band gaps in very good agreement with experimentally derived reference values. These results open up the field of dilute nitride compound semiconductors to predictive ab initio calculations.
An archetypical spin-glass metallic alloy, Cu0.83Mn0.17, is studied by means of an ab-initio based approach. First-principles calculations are employed to obtain effective chemical, strain-induced and magnetic exchange interactions, as well as static atomic displacements, and the interactions are subsequently used in thermodynamic simulations. It is shown that the calculated atomic and magnetic short-range order accurately reproduces the results of neutron-scattering experiments. In particular, it is confirmed that the alloy exhibits a tendency toward ordering and the corresponding ordered phase is revealed. The magnetic structure is represented by spin-spiral clusters accompanied by weaker ferromagnetic short-range correlations. The spin-glass transition temperature obtained in Monte Carlo simulations by a finite-size scaling technique, 57 K, is in reasonable agreement with experimental data, 78 K.
In steels and single-crystal superalloys the control of the formation of topologically close-packed (TCP) phases is critical for the performance of the material. The structural stability of TCP phases in multi-component transition-metal alloys may be rationalised in terms of the average valence-electron count $bar{N}$ and the composition-dependent relative volume-difference $overline{Delta V/V}$. We elucidate the interplay of these factors by comparing density-functional theory calculations to an empirical structure map based on experimental data. In particular, we calculate the heat of formation for the TCP phases A15, C14, C15, C36, $chi$, $mu$, and $sigma$ for all possible binary occupations of the Wyckoff positions. We discuss the isovalent systems V/Nb-Ta to highlight the role of atomic-size difference and observe the expected stabilisation of C14/C15/C36/$mu$ by $overline{Delta V/V}$ at $Delta N=0$ in V-Ta. In the systems V/Nb-Re, we focus on the well-known trend of A15$- sigma - chi$ stability with increasing $bar{N}$ and show that the influence of $overline{Delta V/V}$ is too weak to stabilise C14/C15/C36/$mu$ in Nb-Re. As an example for a significant influence of both $bar{N}$ and $overline{Delta V/V}$, we also consider the systems Cr/Mo-Co. Here the sequence A15$- sigma - chi$ is observed in both systems but in Mo-Co the large size-mismatch stabilises C14/C15/C36/$mu$. We also include V/Nb-Co that cover the entire valence range of TCP stability and also show the stabilisation of C14/C15/C36/$mu$. Moreover, the combination of a large volume difference with a large mismatch in valence-electron count reduces the stability of the A15/$sigma$/$chi$ phases in Nb-Co as compared to V-Co. By comparison to non-magnetic calculations we also find that magnetism is of minor importance for the structural stability of TCP phases in Cr/Mo-Co and in V/Nb-Co.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا