ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio study of atomic ordering and spin-glass transition in dilute CuMn alloys

142   0   0.0 ( 0 )
 نشر من قبل Oleg Peil
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An archetypical spin-glass metallic alloy, Cu0.83Mn0.17, is studied by means of an ab-initio based approach. First-principles calculations are employed to obtain effective chemical, strain-induced and magnetic exchange interactions, as well as static atomic displacements, and the interactions are subsequently used in thermodynamic simulations. It is shown that the calculated atomic and magnetic short-range order accurately reproduces the results of neutron-scattering experiments. In particular, it is confirmed that the alloy exhibits a tendency toward ordering and the corresponding ordered phase is revealed. The magnetic structure is represented by spin-spiral clusters accompanied by weaker ferromagnetic short-range correlations. The spin-glass transition temperature obtained in Monte Carlo simulations by a finite-size scaling technique, 57 K, is in reasonable agreement with experimental data, 78 K.



قيم البحث

اقرأ أيضاً

We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical spin glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the system to the low te mperature phase. The system is modeled by a Heisenberg Hamiltonian where the Heisenberg interaction parameters are calculated by means of first-principles density functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the equations of motion and the system size. For large damping and large system sizes we observe the typical aging regime.
We present an extension of the relativistic electron transport theory for the standard (charge) conductivity tensor of random alloys within the tight-binding linear muffin-tin orbital method to the so-called spin-dependent conductivity tensor, which describes the Kubo linear response of spin currents to external electric fields. The approach is based on effective charge- and spin-current operators, that correspond to intersite electron transport and that are nonrandom, which simplifies the configuration averaging by means of the coherent potential approximation. Special attention is paid to the Fermi sea term of the spin-dependent conductivity tensor, which contains a nonzero incoherent part, in contrast to the standard conductivity tensor. The developed formalism is applied to the spin Hall effect in binary random nonmagnetic alloys, both on a model level and for Pt-based alloys with an fcc structure. We show that the spin Hall conductivity consists of three contributions (one intrinsic and two extrinsic) which exhibit different concentration dependences in the dilute limit of an alloy. Results for selected Pt alloys (Pt-Re, Pt-Ta) lead to the spin Hall angles around 0.2; these sizable values are obtained for compositions that belong to thermodynamically equilibrium phases. These alloys can thus be considered as an alternative to other systems for efficient charge to spin conversion, which are often metastable crystalline or amorphous alloys.
Core-level shifts and core-hole screening effects in alloy formation are studied ``ab initio by constrained-density-functional total-energy calculations. For our case study, the ordered intermetallic alloy MgAu, final-state effects are essential to a ccount for the experimental Mg 1s shift, while they are negligible for Au 4f. We explain the differences in the screening by analyzing the calculated charge density response to the core hole perturbation.
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined us ing multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
By using ab initio methods on different levels we study the magnetic ground state of (finite) atomic wires deposited on metallic surfaces. A phenomenological model based on symmetry arguments suggests that the magnetization of a ferromagnetic wire is aligned either normal to the wire and, generally, tilted with respect to the surface normal or parallel to the wire. From a first principles point of view, this simple model can be best related to the so--called magnetic force theorem calculations being often used to explore magnetic anisotropy energies of bulk and surface systems. The second theoretical approach we use to search for the canted magnetic ground state is first principles adiabatic spin dynamics extended to the case of fully relativistic electron scattering. First, for the case of two adjacent Fe atoms an a Cu(111) surface we demonstrate that the reduction of the surface symmetry can indeed lead to canted magnetism. The anisotropy constants and consequently the ground state magnetization direction are very sensitive to the position of the dimer with respect to the surface. We also performed calculations for a seven--atom Co chain placed along a step edge of a Pt(111) surface. As far as the ground state spin orientation is concerned we obtain excellent agreement with experiment. Moreover, the magnetic ground state turns out to be slightly noncollinear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا