ﻻ يوجد ملخص باللغة العربية
While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The root of this lies in the strong distortion N atoms exert on most host materials. Here, we resolve these issues by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, we show that the distortion field of a single N atom must be allowed to decrease so far, that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing to compute band gaps in very good agreement with experimentally derived reference values. These results open up the field of dilute nitride compound semiconductors to predictive ab initio calculations.
We report the compositional dependence of the electronic band structure for a range of III-V alloys. Density functional theory with the PBE functional is insufficient to mimic the electronic gap energies at different symmetry points of the Brillouin
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined us
We study the general problem of mixing for ab-initio quantum-mechanical problems. Guided by general mathematical principles and the underlying physics, we propose a multisecant form of Broydens second method for solving the self-consistent field equa
A degenerate perturbation $kcdot p$ approach for effective mass calculations is implemented in the all-electron density functional theory (DFT) package WIEN2k. The accuracy is tested on major group IVA, IIIA-VA, and IIB-VIA semiconductor materials. T
In this work the complete valence-band structure of the molybdenum dichalcogenides MoS_2, MoSe_2, and alpha-MoTe_2 is presented and discussed in comparison. The valence bands have been studied using both angle-resolved photoelectron spectroscopy (ARP