ﻻ يوجد ملخص باللغة العربية
Observations of ionised carbon at 158 micron ([CII]) from luminous star-forming galaxies at z~0 show that their ratios of [CII] to far infrared (FIR) luminosity are systematically lower than those of more modestly star-forming galaxies. In this paper, we provide a theory for the origin of this so called [CII] deficit in galaxies. Our model treats the interstellar medium as a collection of clouds with radially-stratified chemical and thermal properties, which are dictated by the clouds volume and surface densities, as well as the interstellar radiation and cosmic ray fields to which they are exposed. [CII] emission arises from the outer, HI dominated layers of clouds, and from regions where the hydrogen is H2 but the carbon is predominantly C+. In contrast, the most shielded regions of clouds are dominated by CO and produce little [CII] emission. This provides a natural mechanism to explain the observed [CII]-star formation relation: galaxies star formation rates are largely driven by the surface densities of their clouds. As this rises, so does the fraction of gas in the CO-dominated phase that produces little [CII] emission. Our model further suggests that the apparent offset in the [CII]-FIR relation for high-z sources compared to those at present epoch may arise from systematically larger gas masses at early times: a galaxy with a large gas mass can sustain a high star formation rate even with relatively modest surface density, allowing copious [CII] emission to coexist with rapid star formation.
We present 0.15-arcsec (1 kpc) resolution ALMA observations of the [CII] 157.74 um line and rest-frame 160-um continuum emission in two z~3 dusty, star-forming galaxies - ALESS 49.1 and ALESS 57.1, combined with resolved CO(3-2) observations. In both
A tight relation between the [CII]158$mu$m line luminosity and star formation rate is measured in local galaxies. At high redshift ($z>5$), though, a much larger scatter is observed, with a considerable (15-20%) fraction of the outliers being [CII]-d
We present [CII] 158um measurements from over 15,000 resolved regions within 54 nearby galaxies of the KINGFISH program to investigate the so-called [CII] line cooling deficit long known to occur in galaxies with different luminosities. The [CII]/TIR
The [CII] deficit, which describes the observed decrease in the ratio of [CII] 158 micron emission to continuum infrared emission in galaxies with high star formation surface densities, places a significant challenge to the interpretation of [CII] de
We present Herschel/PACS observations of extended [CII]157.7{mu}m line emission detected on ~ 1 - 10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS). We find that most of the extra-nu