ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spatially Resolved [CII] Cooling Line Deficit in Galaxies

72   0   0.0 ( 0 )
 نشر من قبل John-David Smith
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present [CII] 158um measurements from over 15,000 resolved regions within 54 nearby galaxies of the KINGFISH program to investigate the so-called [CII] line cooling deficit long known to occur in galaxies with different luminosities. The [CII]/TIR ratio ranges from above 1% to below 0.1% in the sample, with a mean value of 0.48+-0.21%. We find that the surface density of 24um emission dominates this trend, with [CII]/TIR dropping as nuInu{24um} increases. Deviations from this overall decline are correlated with changes in the gas phase metal abundance, with higher metallicity associated with deeper deficits at a fixed surface brightness. We supplement the local sample with resolved [CII] measurements from nearby luminous infrared galaxies and high redshift sources from z=1.8-6.4, and find that star formation rate density drives a continuous trend of deepening [CII] deficit across six orders of magnitude in SFRD. The tightness of this correlation suggests that an approximate star formation rate density can be estimated directly from global measurements of [CII]/TIR, and a relation is provided to do so. Several low-luminosity AGN hosts in the sample show additional and significant central suppression of [CII]/TIR, but these deficit enhancements occur not in those AGN with the highest X-ray luminosities, but instead those with the highest central starlight intensities. Taken together, these results demonstrate that the [CII] cooling line deficit in galaxies likely arises from local physical phenomena in interstellar gas.



قيم البحث

اقرأ أيضاً

195 - Desika Narayanan 2016
Observations of ionised carbon at 158 micron ([CII]) from luminous star-forming galaxies at z~0 show that their ratios of [CII] to far infrared (FIR) luminosity are systematically lower than those of more modestly star-forming galaxies. In this paper , we provide a theory for the origin of this so called [CII] deficit in galaxies. Our model treats the interstellar medium as a collection of clouds with radially-stratified chemical and thermal properties, which are dictated by the clouds volume and surface densities, as well as the interstellar radiation and cosmic ray fields to which they are exposed. [CII] emission arises from the outer, HI dominated layers of clouds, and from regions where the hydrogen is H2 but the carbon is predominantly C+. In contrast, the most shielded regions of clouds are dominated by CO and produce little [CII] emission. This provides a natural mechanism to explain the observed [CII]-star formation relation: galaxies star formation rates are largely driven by the surface densities of their clouds. As this rises, so does the fraction of gas in the CO-dominated phase that produces little [CII] emission. Our model further suggests that the apparent offset in the [CII]-FIR relation for high-z sources compared to those at present epoch may arise from systematically larger gas masses at early times: a galaxy with a large gas mass can sustain a high star formation rate even with relatively modest surface density, allowing copious [CII] emission to coexist with rapid star formation.
143 - D. Rubin , S. Hony , S.C. Madden 2008
(abridged) We study photoelectric heating throughout the Large Magellanic Cloud. We quantify the importance of the [CII] cooling line and the photoelectric heating process of various environments in the LMC and investigate which parameters control th e extent of photoelectric heating. We use the BICE [CII] map and the Spitzer/SAGE infrared maps. We examine the spatial variations in the efficiency of photoelectric heating: photoelectric heating rate over power absorbed by grains. We correlate the photoelectric heating efficiency and the emission from various dust constituents and study the variations as a function of Halpha emission, dust temperatures, and the total infrared luminosity. From this we estimate radiation field, gas temperature, and electron density. We find systematic variations in photoelectric efficiency. The highest efficiencies are found in the diffuse medium, while the lowest coincide with bright star-forming regions (~1.4 times lower). The [CII] line emission constitutes 1.32% of the far infrared luminosity across the whole of the LMC. We find correlations between the [CII] emission and ratios of the mid infrared and far infrared bands, which comprise various dust constituents. The correlations are interpreted in light of the spatial variations of the dust abundance and by the local environmental conditions that affect the dust emission properties. As a function of the total infrared surface brightness, S_{TIR}, the [CII] surface brightness can be described as: S_{[CII]}=1.25 S_{TIR}^{0.69} [10^{-3} erg s^{-1} cm^{-2} sr^{-1}]. The [CII] emission is well-correlation with the 8 micrometer emission, suggesting that the polycyclic aromatic hydrocarbons play a dominant role in the photoelectric heating process.
We present optical integral field spectroscopy for five $z<0.062$ narrow-line Seyfert 1 galaxies (NLS1s) host galaxies, probing their host galaxies at $gtrsim 2-3$ kpc scales. Emission lines in the nuclear AGN spectra and the large-scale host galaxy are analyzed separately, based on an AGN-host decomposition technique. The host galaxy gas kinematics indicates large-scale gas rotation in all five sources. At the probed scales of $gtrsim 2-3$ kpc, the host galaxy gas is found to be predominantly ionized by star formation without any evidence of a strong AGN contribution. None of the five objects shows specific star formation rates exceeding the main sequence of low-redshift star forming galaxies. The specific star formation rates for MCG-05-01-013 and WPVS 007 are roughly consistent with the main sequence, while ESO 399-IG20, MS 22549-3712, and TON S180 show lower specific star formation rates, intermediate to the main sequence and red quiescent galaxies. The host galaxy metallicities, derived for the two sources with sufficient data quality (ESO 399-IG20 and MCG-05-01-013), indicate central oxygen abundances just below the low-redshift mass-metallicity relation. Based on this initial case study, we outline a comparison of AGN and host galaxy parameters as a starting point for future extended NLS1 studies with similar methods.
We present 0.15-arcsec (1 kpc) resolution ALMA observations of the [CII] 157.74 um line and rest-frame 160-um continuum emission in two z~3 dusty, star-forming galaxies - ALESS 49.1 and ALESS 57.1, combined with resolved CO(3-2) observations. In both sources, the [CII] surface brightness distribution is dominated by a compact core $leq$1 kpc in radius, a factor of 2-3 smaller than the extent of the CO(3-2) emission. In ALESS 49.1, we find an additional extended (8-kpc radius), low surface-brightness [CII] component. Based on an analysis of mock ALMA observations, the [CII] and 160-um continuum surface brightness distributions are inconsistent with a single-Gaussian surface brightness distribution with the same size as the CO(3-2) emission. The [CII] rotation curves flatten at $simeq$2 kpc radius, suggesting the kinematics of the central regions are dominated by a baryonic disc. Both galaxies exhibit a strong [CII]/FIR deficit on 1-kpc scales, with FIR-surface-brightness to [CII]/FIR slope steeper than in local star-forming galaxies. A comparison of the [CII]/CO(3-2) observations with PDR models suggests a strong FUV radiation field ($G_0sim10^4$) and high gas density ($nmathrm{(H)}sim10^4-10^5$ cm$^{-3}$) in the central regions of ALESS 49.1 and 57.1. The most direct interpretation of the pronounced [CII]/FIR deficit is a thermal saturation of the C+ fine-structure levels at temperatures $geq$500 K, driven by the strong FUV field.
The [CII] fine structure transition at 158 microns is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through meter wavelengths. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a SFR indicator at z>4. In this paper, we use a semi-analytical model of galaxy evolution (G.A.S.) combined with the code CLOUDY to predict the [CII] luminosity of a large number of galaxies at 4< z<8. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We study the LCII-SFR and LCII-Zg relations and show that they do not strongly evolve with redshift from z=4 and to z=8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher star formation rates but the correlations are very broad, with a scatter of about 0.5 dex for LCII-SFR. Our model reproduces the LCII-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local LCII-SFR relations. Accordingly, the local observed LCII-SFR relation does not apply at high-z. Our model naturally produces the [CII] deficit, which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the [CII] luminosity function, and show that it has a power law form in the range of LCII probed by the model with a slope alpha=1. The slope is not evolving from z=4 to z=8 but the number density of [CII]-emitters decreases by a factor of 20x. We discuss our predictions in the context of current observational estimates on both the differential and cumulative luminosity functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا