ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical net-proton fluctuations near a QCD critical point

73   0   0.0 ( 0 )
 نشر من قبل Christoph Herold
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the evolution of the net-proton kurtosis and the kurtosis of the chiral order parameter near the critical point in the model of nonequilibrium chiral fluid dynamics. The order parameter is propagated explicitly and coupled to an expanding fluid of quarks and gluons in order to describe the dynamical situation in a heavy-ion collision. We study the critical region near the critical point on the crossover side. There are two sources of fluctuations: non-critical initial event-by-event fluctuations and critical fluctuations. These fluctuations can be distinguished by comparing a mean-field evolution of averaged thermodynamic quantities with the inclusion of fluctuations at the phase transition. We find that while the initial state fluctuations give rise to flat deviations from statistical fluctuations, critical fluctuations reveal a clear structure of the phase transition. The signals of the critical point in the net-proton and sigma field kurtosis are affected by the nonequilibrium dynamics and the inhomogeneity of the space-time evolution but develop clearly.



قيم البحث

اقرأ أيضاً

Net-proton number fluctuations can be measured experimentally and hence provide a source of important information about the matter created during relativistic heavy ion collisions. Particularly, they may give us clues about the conjectured QCD critic al point. In this work the beam-energy dependence of ratios of the first four cumulants of the net-proton number is discussed. These quantities are calculated using a phenomenologically motivated model in which critical mode fluctuations couple to protons and anti-protons. Our model qualitatively captures both the monotonic behavior of the lowest-order ratio as well as the non-monotonic behavior of higher-order ratios, as seen in the experimental data from the STAR Collaboration. We also discuss the dependence of our results on the coupling strength and the location of the critical point.
Event-by-event fluctuations of the net-proton number studied in heavy-ion collisions provide an important means in the search for the conjectured critical end point (CP) in the QCD phase diagram. We propose a phenomenological model in which the fluct uations of the chiral critical mode couple to protons and anti-protons. This allows us to study the behavior of the net-proton number fluctuations in the presence of the CP. Calculating the net-proton number cumulants, $C_n$ with n=1,2,3,4, along the phenomenological freeze-out line we show that the ratio of variance and mean $C_2/C_1$, as well as kurtosis $C_4/C_2$ resemble qualitative properties observed in data in heavy-ion collisions as a function of beam energy obtained by the STAR Collaboration at RHIC. In particular, the non-monotonic structure of the kurtosis and smooth change of the $C_2/C_1$ ratio with beam energy could be due to the CP located near the freeze-out line. The skewness, however, exhibits properties that are in contrast to the criticality expected due to the CP. The dependence of our results on the model parameters and the proximity of the chemical freeze-out to the critical point are also discussed.
Observations from collisions of heavy-ion at relativistic energies have established the formation of a new phase of matter, Quark Gluon Plasma (QGP), a deconfined state of quarks and gluons in a specific region of the temperature versus baryonic chem ical potential phase diagram of strong interactions. A program to study the features of the phase diagram, such as a possible critical point, by varying the collision energy ($sqrt{s_{rm NN}}$), is performed at the Relativistic Heavy-Ion Collider (RHIC) facility. Non-monotonic variation with $sqrt{s_{rm NN}}$ of moments of the net-baryon number distribution, related to the correlation length and the susceptibilities of the system, is suggested as a signature for a critical point. We report the first evidence of a non-monotonic variation in kurtosis $times$ variance of the net-proton number (proxy for net-baryon number) distribution as a function of $sqrt{s_{rm NN}}$ with 3.1$sigma$ significance, for head-on (central) gold-on-gold (Au+Au) collisions measured using the STAR detector at RHIC. Non-central Au+Au collisions and models of heavy-ion collisions without a critical point show a monotonic variation as a function of $sqrt{s_{rm NN}}$.
143 - Marlene Nahrgang 2018
A quantitatively reliable theoretical description of the dynamics of fluctuations in non-equilibrium is indispensable in the experimental search for the QCD critical point by means of ultra-relativistic heavy-ion collisions. In this work we consider the fluctuations of the net-baryon density which becomes the slow, critical mode near the critical point. Due to net-baryon number conservation the dynamics is described by the fluid dynamical diffusion equation, which we extend to contain a white noise stochastic current. Including nonlinear couplings from the 3d Ising model universality class in the free energy functional, we solve the fully interacting theory in a finite size system. We observe that purely Gaussian white noise generates non-Gaussian fluctuations, but finite size effects and exact net-baryon number conservation lead to significant deviations from the expected behavior in equilibrated systems. In particular the skewness shows a qualitative deviation from infinite volume expectations. With this benchmark established we study the real-time dynamics of the fluctuations. We recover the expected dynamical scaling behavior and observe retardation effects and the impact of critical slowing down near the pseudo-critical temperature.
The net-baryon number fluctuations for three-flavor quark matter are computed within the Polyakov extended Nambu$-$Jona-Lasinio model. Two models with vanishing and nonvanishing vector interactions are considered. While the former predicts a critical end point (CEP) in the phase diagram, the latter predicts no CEP. We show that the nonmonotonic behavior of the susceptibilities in the phase diagram is still present even in the absence of a CEP. Therefore, from the nonmonotonic behavior of the susceptibilities solely, one cannot assume the existence of a CEP. We analyze other possible properties that may distinguish the two scenarios, and determine the behavior of the net-baryon number fluctuations and the velocity of sound along several isentropes, with moderate and small values. It is shown that the value of the susceptibilities ratios and the velocity of sound at two or three isentropic lines could possibly allow to distinguish both scenarios, a phase diagram with or without CEP. Smoother behaviors of these quantities may indicate the nonexistence of a CEP. We also discuss the critical behavior of the strange sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا