ﻻ يوجد ملخص باللغة العربية
A quantitatively reliable theoretical description of the dynamics of fluctuations in non-equilibrium is indispensable in the experimental search for the QCD critical point by means of ultra-relativistic heavy-ion collisions. In this work we consider the fluctuations of the net-baryon density which becomes the slow, critical mode near the critical point. Due to net-baryon number conservation the dynamics is described by the fluid dynamical diffusion equation, which we extend to contain a white noise stochastic current. Including nonlinear couplings from the 3d Ising model universality class in the free energy functional, we solve the fully interacting theory in a finite size system. We observe that purely Gaussian white noise generates non-Gaussian fluctuations, but finite size effects and exact net-baryon number conservation lead to significant deviations from the expected behavior in equilibrated systems. In particular the skewness shows a qualitative deviation from infinite volume expectations. With this benchmark established we study the real-time dynamics of the fluctuations. We recover the expected dynamical scaling behavior and observe retardation effects and the impact of critical slowing down near the pseudo-critical temperature.
The experimental search for the QCD critical point by means of relativistic heavy-ion collisions necessitates the development of dynamical models of fluctuations. In this work we study the fluctuations of the net-baryon density near the critical poin
The evolution of non-hydrodynamic slow processes near the QCD critical point is explored with the novel Hydro+ framework, which extends the conventional hydrodynamic description by coupling it to additional explicitly evolving slow modes describing l
We present a fully dynamical model to study the chiral and deconfinement transition of QCD simultaneously. The quark degrees of freedom constitute a heat bath in local equilibrium for both order parameters, the sigma field and a dynamical Polyakov lo
Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued to follow different trajectories in the QCD phase diagram in which the QCD critical point serves as a landmark. Using a (1+1)-dimensional model setting
The impact of the QCD critical point on the propagation of nonlinear waves has been studied. The effects have been investigated within the scope of second-order causal dissipative hydrodynamics by incorporating the critical point into the equation of