ﻻ يوجد ملخص باللغة العربية
The energy-spectrum of two point-like particles interacting in a 3-D isotropic Harmonic Oscillator (H.O.) trap is related to the free scattering phase-shifts $delta$ of the particles by a formula first published by Busch et al. It is here used to find an expression for the it shift rm of the energy levels, caused by the interaction, rather than the perturbed spectrum itself. In the limit of high energy (large quantum number $n$ of the H.O.) this shift is shown to be given by $-2frac{delta}{pi}$, also valid in the limit of infinite as well as zero scattering length at all H.O. energies. Numerical investigation shows that the shifts differ from the exact result of Busch et al, by less than $<frac{1}{2}%$ except for $n=0$ when it can be as large as $approx 2.5%$. This approximation for the energy-shift is well known from another exactly solvable model, namely that of two particles interacting in a spherical infinite square-well trap (or box) of radius $R$ in the limit $Rrightarrow infty$, and/or in the limit of large energy. It is in this context referred to as the it phase-shift approximation rm. It can be (and has been) used in (infinite) nuclear matter calculations to calculate the two-body effective interaction in situations where in-medium effects can be neglected. It has also been used in expressing the energy of free electrons in a metal.
We consider the long-term weakly nonlinear evolution governed by the two-dimensional nonlinear Schr{o}dinger (NLS) equation with an isotropic harmonic oscillator potential. The dynamics in this regime is dominated by resonant interactions between qua
We consider a quantum quench of the trap frequency in a system of bosons interacting through an inverse-square potential and confined in a harmonic trap (the harmonic Calogero model). We determine exactly the initial state in terms of the post-quench
We propose a Real-Space Gutzwiller variational approach and apply it to a system of repulsively interacting ultracold fermions with spin 1/2 trapped in an optical lattice with a harmonic confinement. Using the Real-Space Gutzwiller variational approa
We present some theoretical results on the lattice vibrations that are necessary for a concise derivation of the Debye-Waller factor in the harmonic approximation. First we obtain an expression for displacement of an atom in a crystal lattice from it
Solution of the scattering problem turns to be very difficult task both from the formal as well as from the computational point of view. If the last two decades have witnessed decisive progress in ab initio bound state calculations, rigorous solution