ﻻ يوجد ملخص باللغة العربية
We consider a quantum quench of the trap frequency in a system of bosons interacting through an inverse-square potential and confined in a harmonic trap (the harmonic Calogero model). We determine exactly the initial state in terms of the post-quench eigenstates and derive the time evolution of simple physical observables. Since this model possesses an infinite set of integrals of motion (IoM) that allow its exact solution, a generalised Gibbs ensemble (GGE), i.e. a statistical ensemble that takes into account the conservation of all IoM, can be proposed in order to describe the values of local physical observables long after the quench. Even though, due to the presence of the trap, physical observables do not exhibit equilibration but periodic evolution, such a GGE may still describe correctly their time averaged values. We check this analytically for the local boson density and find that the GGE conjecture is indeed valid, in the thermodynamic limit.
One of the fundamental principles of statistical physics is that only partial information about a systems state is required for its macroscopic description. This is not only true for thermal ensembles, but also for the unconventional ensemble, known
We study statistical properties of $N$ non-interacting identical bosons or fermions in the canonical ensemble. We derive several general representations for the $p$-point correlation function of occupation numbers $overline{n_1cdots n_p}$. We demonst
Motivated by recent experiments, we study the relaxation dynamics and thermalization in the one-dimensional Bose-Hubbard model induced by a global interaction quench. Specifically, we start from an initial state that has exactly one boson per site an
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length
One of the manifestations of relativistic invariance in non-equilibrium quantum field theory is the horizon effect a.k.a. light-cone spreading of correlations: starting from an initially short-range correlated state, measurements of two observers at