ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-Pasta-Ulam phenomena and persistent breathers in the harmonic trap

77   0   0.0 ( 0 )
 نشر من قبل Anxo Biasi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the long-term weakly nonlinear evolution governed by the two-dimensional nonlinear Schr{o}dinger (NLS) equation with an isotropic harmonic oscillator potential. The dynamics in this regime is dominated by resonant interactions between quartets of linear normal modes, accurately captured by the corresponding resonant Hamiltonian system. In the framework of this system, we identify Fermi-Pasta-Ulam-like recurrence phenomena, whereby the normal-mode spectrum passes in close proximity of the initial configuration, and two-mode states with time-independent mode amplitude spectra that translate into long-lived breathers of the original NLS equation. We comment on possible implications of these findings for nonlinear optics and matter-wave dynamics in Bose-Einstein condensates.



قيم البحث

اقرأ أيضاً

The effect of discrete breathers (DBs) on macroscopic properties of the Fermi-Pasta-Ulam chain with symmetric and asymmetric potentials is investigated. The total to kinetic energy ratio (related to specific heat), stress (related to thermal expansio n), and Youngs modulus are monitored during the development of modulational instability of the zone boundary mode. The instability results in the formation of chaotic DBs followed by the transition to thermal equilibrium when DBs disappear due to energy radiation in the form of small-amplitude phonons. It is found that DBs reduce the specific heat for all the considered chain parameters. They increase the thermal expansion when the potential is asymmetric and, as expected, thermal expansion is not observed in the case of symmetric potential. The Youngs modulus in the presence of DBs is smaller than in thermal equilibrium for the symmetric potential and for the potential with a small asymmetry, but it is larger than in thermal equilibrium for the potential with greater asymmetry. Our results can be useful for setting experiments on the identification of DBs in crystals by measuring their macroscopic properties.
We perform a thorough investigation of the first FPUT recurrence in the $beta$-FPUT chain for both positive and negative $beta$. We show numerically that the rescaled FPUT recurrence time $T_{r}=t_{r}/(N+1)^{3}$ depends, for large $N$, only on the pa rameter $Sequiv Ebeta(N+1)$. Our numerics also reveal that for small $left|Sright|$, $T_{r}$ is linear in $S$ with positive slope for both positive and negative $beta$. For large $left|Sright|$, $T_{r}$ is proportional to $left|Sright|^{-1/2}$ for both positive and negative $beta$ but with different multiplicative constants. In the continuum limit, the $beta$-FPUT chain approaches the modified Korteweg-de Vries (mKdV) equation, which we investigate numerically to better understand the FPUT recurrences on the lattice. In the continuum, the recurrence time closely follows the $|S|^{-1/2}$ scaling and can be interpreted in terms of solitons, as in the case of the KdV equation for the $alpha$ chain. The difference in the multiplicative factors between positive and negative $beta$ arises from soliton-kink interactions which exist only in the negative $beta$ case. We complement our numerical results with analytical considerations in the nearly linear regime (small $left|Sright|$) and in the highly nonlinear regime (large $left|Sright|$). For the former, we extend previous results using a shifted-frequency perturbation theory and find a closed form for $T_{r}$ which depends only on $S$. In the latter regime, we show that $T_{r}proptoleft| Sright|^{-1/2}$ is predicted by the soliton theory in the continuum limit. We end by discussing the striking differences in the amount of energy mixing as well as the existence of the FPUT recurrences between positive and negative $beta$ and offer some remarks on the thermodynamic limit.
Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. The simplest form of instability in a distributed system is its response to a harmonic modula tion. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI is tightly related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrodinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios.
181 - A. Hoffman , C.E. Wayne 2008
We prove the existence of asymptotic two-soliton states in the Fermi-Pasta-Ulam model with general interaction potential. That is, we exhibit solutions whose difference in $ell^2$ from the linear superposition of two solitary waves goes to zero as time goes to infinity.
The lifetimes of localized nonlinear modes in both the $beta$-Fermi-Pasta-Ulam-Tsingou ($beta$-FPUT) chain and a cubic $beta$-FPUT lattice are studied as functions of perturbation amplitude, and by extension, the relative strength of the nonlinear in teractions compared to the linear part. We first recover the well known result that localized nonlinear excitations (LNEs) produced by a bond squeeze can be reduced to an approximate two-frequency solution and then show that the nonlinear term in the potential can lead to the production of secondary frequencies within the phonon band. This can affect the stability and lifetime of the LNE by facilitating interactions between the LNE and a low energy acoustic background which can be regarded as noise in the system. In the one dimensional FPUT chain, the LNE is stabilized by low energy acoustic emissions at early times; in some cases allowing for lifetimes several orders of magnitude larger than the oscillation period. The longest lived LNEs are found to satisfy the parameter dependence $mathcal{A}sqrt{beta}approx1.1$ where $beta$ is the relative nonlinear strength and $mathcal{A}$ is the displacement amplitude of the center particles in the LNE. In the cubic FPUT lattice, the LNE lifetime $T$ decreases rapidly with increasing amplitude $mathcal{A}$ and is well described by the double log relationship $log_{10}log_{10}(T)approx -(0.15pm0.01)mathcal{A}sqrt{beta}+(0.62pm0.02)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا