ترغب بنشر مسار تعليمي؟ اضغط هنا

Current Control of Magnetic Anisotropy via Stress in a Ferromagnetic Metal Waveguide

45   0   0.0 ( 0 )
 نشر من قبل Kyongmo An
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that in-plane charge current can effectively control the spin precession resonance in an Al2O3/CoFeB/Ta heterostructure. Brillouin Light Scattering (BLS) was used to detect the ferromagnetic resonance field under microwave excitation of spin waves at fixed frequencies. The current control of spin precession resonance originates from modification of the in-plane uniaxial magnetic anisotropy field H_k, which changes symmetrically with respect to the current direction. Numerical simulation suggests that the anisotropic stress introduced by Joule heating plays an important role in controlling H_k. These results provide new insights into current manipulation of magnetic properties and have broad implications for spintronic devices.

قيم البحث

اقرأ أيضاً

A small fraction of phosphorus (up to 10 %) was incorporated in ferromagnetic (Ga,Mn)As epilayers grown on a GaAs substrate. P incorporation allows reducing the epitaxial strain or even change its sign, resulting in strong modifications of the magnet ic anisotropy. In particular a reorientation of the easy axis toward the growth direction is observed for high P concentration. It offers an interesting alternative to the metamorphic approach, in particular for magnetization reversal experiments where epitaxial defects stongly affect the domain wall propagation.
359 - A. Chernyshov , M. Overby , X. Liu 2009
Conventional computer electronics creates a dichotomy between how information is processed and how it is stored. Silicon chips process information by controlling the flow of charge through a network of logic gates. This information is then stored, mo st commonly, by encoding it in the orientation of magnetic domains of a computer hard disk. The key obstacle to a more intimate integration of magnetic materials into devices and circuit processing information is a lack of efficient means to control their magnetization. This is usually achieved with an external magnetic field or by the injection of spin-polarized currents. The latter can be significantly enhanced in materials whose ferromagnetic properties are mediated by charge carriers. Among these materials, conductors lacking spatial inversion symmetry couple charge currents to spin by intrinsic spin-orbit (SO) interactions, inducing nonequilibrium spin polarization tunable by local electric fields. Here we show that magnetization of a ferromagnet can be reversibly manipulated by the SO-induced polarization of carrier spins generated by unpolarized currents. Specifically, we demonstrate domain rotation and hysteretic switching of magnetization between two orthogonal easy axes in a model ferromagnetic semiconductor.
We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e. BaTiO3 (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the ca pability to precisely control its growth, we are able to distinguish the dominant role of the oxide termination (TiO2 vs BaO), from the moderate effect of ferroelectric polarization in the BTO film, on the PMA and DMI at the oxide/FM interface. We find that the interfacial magnetic anisotropy energy of the BaO-BTO/CoFeB structure is two times larger than that of the TiO2-BTO/CoFeB, while the DMI of the TiO2-BTO/CoFeB interface is larger. We explain the observed phenomena by first-principles calculations, which ascribe them to the different electronic states around the Fermi level at the oxide/ferromagnetic metal interfaces and the different spin-flip processes. This study paves the way for further investigation of the PMA and DMI at various oxide/FM structures and thus their applications in the promising field of energy-efficient devices.
We demonstrate dynamic voltage control of the magnetic anisotropy of a (Ga,Mn)As device bonded to a piezoelectric transducer. The application of a uniaxial strain leads to a large reorientation of the magnetic easy axis which is detected by measuring longitudinal and transverse anisotropic magnetoresistance coefficients. Calculations based on the mean-field kinetic-exchange model of (Ga,Mn)As provide microscopic understanding of the measured effect. Electrically induced magnetization switching and detection of unconventional crystalline components of the anisotropic magnetoresistance are presented, illustrating the generic utility of the piezo voltage control to provide new device functionalities and in the research of micromagnetic and magnetotransport phenomena in diluted magnetic semiconductors.
128 - P. Hyde , Lihui Bai , D.M.J. Kumar 2013
We report room temperature electrical detection of spin injection from a ferromagnetic insulator (YIG) into a ferromagnetic metal (Permalloy, Py). Non-equilibrium spins with both static and precessional spin polarizations are dynamically generated by the ferromagnetic resonance of YIG magnetization, and electrically detected by Py as dc and ac spin currents, respectively. The dc spin current is electrically detected via the inverse spin Hall effect of Py, while the ac spin current is converted to a dc voltage via the spin rectification effect of Py which is resonantly enhanced by dynamic exchange interaction between the ac spin current and the Py magnetization. Our results reveal a new path for developing insulator spintronics, which is distinct from the prevalent but controversial approach of using Pt as the spin current detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا