ﻻ يوجد ملخص باللغة العربية
Pairing gaps in neutron matter need to be computed in a wide range of densities to address open questions in neutron star phenomenology. Traditionally, the Bardeen-Cooper-Schrieffer approach has been used to compute gaps from bare nucleon-nucleon interactions. Here, we incorporate the influence of short- and long-range correlations in the pairing gaps. Short-range correlations are treated including the appropriate fragmentation of single-particle states, and substantially suppress the gaps. Long-range correlations dress the pairing interaction via density and spin modes, and provide a relatively small correction. We use different interactions, some with three-body forces, as a starting point to control for any systematic effects. Results are relevant for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.
The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly
The recent x>1 (e,e) and correlation experiments at momentum transfer Q^2 ge 2 GeV^2 confirm presence of short-range correlations (SRC) in nuclei mostly build of nucleons. Recently we evaluated in a model independent way the dominant photon contrib
The effects of short range correlations in lepton and hadron scattering off nuclei at medium and high energies are discussed.
We review the long standing problem of superfluid pairing in pure neutron matter. For the $s$-wave pairing, we summarize the state of the art of many-body approaches including different $nn$ interactions, medium polarization, short-range correlations
Recent results concerning the use of the Correlated Basis Function to investigate the ground state properties of medium-heavy doubly magic nuclei with microscopic interactions are presented. The calculations have been done by considering a Short-Rang