ﻻ يوجد ملخص باللغة العربية
We review the long standing problem of superfluid pairing in pure neutron matter. For the $s$-wave pairing, we summarize the state of the art of many-body approaches including different $nn$ interactions, medium polarization, short-range correlations and BCS-BEC crossover effects, and compare them with quantum Monte Carlo results at low-densities. We also address pairing in the $p$-wave, which appears at higher densities and hence has large uncertainties due to the poorly constrained interactions, medium effects and many-body forces.
We present an inference of the nuclear symmetry energy magnitude $J$, the slope $L$ and the curvature $K_{rm sym}$ by combining neutron skin data on Ca, Pb and Sn isotopes and our best theoretical information about pure neutron matter (PNM). A Bayesi
We investigate the dynamics of a quantized vortex and a nuclear impurity immersed in a neutron superfluid within a fully microscopic time-dependent three-dimensional approach. The magnitude and even the sign of the force between the quantized vortex
The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within the framework of the extend Bruecker-Hartree-Fock (BHF) approach combined with the BCS theory. The self-energy up to the second-order contribut
The phase diagram of isospin-asymmetrical nuclear matter may feature a number of unconventional phases, which include the translationally and rotationally symmetric, but isospin-asymmetrical BCS condensate, the current-carrying Larkin-Ovchinnikov-Ful
The Bose-Einstein condensation of $alpha$ partciles in the multicomponent environment of dilute, warm nuclear matter is studied. We consider the cases of matter composed of light clusters with mass numbers $Aleq 4$ and matter that in addition these c