ترغب بنشر مسار تعليمي؟ اضغط هنا

Pairing and short-range correlations in nuclear systems

154   0   0.0 ( 0 )
 نشر من قبل Arnau Rios
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly deplete the available single-particle strength around the Fermi surface and thus provide a reduction mechanism of the pairing gap. Here, we study this effect in the singlet and triplet channels of both neutron matter and symmetric nuclear matter. Our calculations use phase-shift equivalent interactions and chiral two-body and three-body interactions as a starting point. We find an unambiguous reduction of the gap in all channels with very small dependence on the NN force in the singlet neutron matter and the triplet nuclear matter channel. In the latter channel, short range correlations alone provide a 50% reduction of the pairing gap.

قيم البحث

اقرأ أيضاً

102 - Giampaolo Co 2002
Recent results concerning the use of the Correlated Basis Function to investigate the ground state properties of medium-heavy doubly magic nuclei with microscopic interactions are presented. The calculations have been done by considering a Short-Rang e Correlation between nucleons. The possibility of identifying effects produced by Short-Range Correlations in electromagnetically induced phenomena is discussed.
Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of sca les stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean- field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.
58 - D. Ding , A. Rios , H. Dussan 2016
Pairing gaps in neutron matter need to be computed in a wide range of densities to address open questions in neutron star phenomenology. Traditionally, the Bardeen-Cooper-Schrieffer approach has been used to compute gaps from bare nucleon-nucleon int eractions. Here, we incorporate the influence of short- and long-range correlations in the pairing gaps. Short-range correlations are treated including the appropriate fragmentation of single-particle states, and substantially suppress the gaps. Long-range correlations dress the pairing interaction via density and spin modes, and provide a relatively small correction. We use different interactions, some with three-body forces, as a starting point to control for any systematic effects. Results are relevant for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.
The electromagnetic transitions to various low-lying excited states of 16O, 48Ca and 208Pb are calculated within a model which considers the short-range correlations. In general the effects of the correlations are small and do not explain the required quenching to describe the data.
74 - Mark Strikman 2011
The recent x>1 (e,e) and correlation experiments at momentum transfer Q^2 ge 2 GeV^2 confirm presence of short-range correlations (SRC) in nuclei mostly build of nucleons. Recently we evaluated in a model independent way the dominant photon contrib ution to the nuclear structure. Taking into account this effect and using definition of x consistent with the exact kinematics of eA scattering (with exact sum rules) results in the significant reduction of R_A(x,Q^2)=F_{2A}(x,Q^2)/F_{2N}(x,Q^2) ratio which explains sim 50% of the EMC effect for xle 0.55 where Fermi motion effects are small. The remaining part of the EMC effect at $xge 0.5$ is consistent with dominance of the contribution of SRCs. Implications for extraction of the F_{2n}/F_{2p} ratio are discussed. Smallness of the non-nucleonic degrees of freedom in nuclei matches well the recent observation of a two-solar mass neutron star, and while large pn SRCs lead to enhancement of the neutron star cooling rate for kTle 0.01 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا