ترغب بنشر مسار تعليمي؟ اضغط هنا

All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

121   0   0.0 ( 0 )
 نشر من قبل Matthias Benjamin Jungfleisch
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.



قيم البحث

اقرأ أيضاً

Conversion of traveling magnons into an electron carried spin current is demonstrated in a time resolved experiment using a spatially separated inductive spin-wave source and an inverse spin Hall effect (ISHE) detector. A short spin-wave packet is ex cited in a yttrium-iron garnet (YIG) waveguide by a microwave signal and is detected at a distance of 3 mm by an attached Pt layer as a delayed ISHE voltage pulse. The delay in the detection appears due to the finite spin-wave group velocity and proves the magnon spin transport. The experiment suggests utilization of spin waves for the information transfer over macroscopic distances in spintronic devices and circuits.
An intriguing feature of spintronics is the use of pure spin-currents to manipulate magnetization, e.g., spin-currents can switch magnetization in spin-torque MRAM, a next-generation DRAM alternative. Giant spin-currents via the spin Hall effect grea tly expand the technological opportunities. Conversely, a ferromagnet/normal metal junction emits spin-currents under microwave excitation, i.e. spin-pumping. While such spin-currents are modulated at the excitation frequency, there is also a non-linear, rectified component that is commonly detected using the corresponding inverse spin Hall effect (iSHE) dc voltage. However, the ac component should be more conducive for quantitative analysis, as it is up to two orders of magnitude larger and linear. But any device that uses the ac iSHE is also sensitive to inductive signals via Faradays Law and discrimination of the ac iSHE signal must rely on phase-sensitive measurements. We use the inductive signal as a reference for a quantitative measurement of the magnitude and phase of the ac iSHE.
The polarization of the spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant component parallel to the precession axis and a rotating one normal to the magnetization. The former component is now routinely detec ted in the form of a DC voltage induced by the inverse spin Hall effect (ISHE). Here we compute AC-ISHE voltages much larger than the DC signals for various material combinations and discuss optimal conditions to observe the effect. Including the backflow of spins is essential for distilling parameters such as the spin Hall angle from ISHE-detected spin pumping experiments.
119 - Hantao Zhang , Ran Cheng 2020
In an easy-plane antiferromagnet with the Dzyaloshinskii-Moriya interaction (DMI), magnons are subject to an effective spin-momentum locking. An in-plane temperature gradient can generate interfacial accumulation of magnons with a specified polarizat ion, realizing the magnon thermal Edelstein effect. We theoretically investigate the injection and detection of this thermally-driven spin polarization in an adjacent heavy metal with strong spin Hall effect. We find that the inverse spin Hall voltage depends monotonically on both temperature and the DMI but non-monotonically on the hard-axis anisotropy. Counterintuitively, the magnon thermal Edelstein effect is an even function of a magnetic field applied along the Neel vector.
The spin Hall effect creates a spin current in response to a charge current in a material that has strong spin-orbit coupling. The size of the spin Hall effect in many materials is disputed, requiring independent measurements of the effect. We develo p a novel mechanical method to measure the size of the spin Hall effect, relying on the equivalence between spin and angular momentum. The spin current carries angular momentum, so the flow of angular momentum will result in a mechanical torque on the material. We determine the size and geometry of this torque and demonstrate that it can be measured using a nanomechanical device. Our results show that measurement of the spin Hall effect in this manner is possible and also opens possibilities for actuating nanomechanical systems with spin currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا