ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Metamaterials for Holography

164   0   0.0 ( 0 )
 نشر من قبل Yehiam Prior
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multi-layer metamaterial holograms where by the nonlinear process of Third Harmonic Generation, a background free image is formed at a new frequency which is the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analyzed and prospects for future device applications are discussed.

قيم البحث

اقرأ أيضاً

We study the properties of a tunable nonlinear metamaterial operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators and wires where a varactor diode is introduced into each resonator so tha t the magnetic resonance can be tuned dynamically by varying the input power. We show that at higher powers the transmission of the metamaterial becomes power dependent, and we demonstrate experimentally power-dependent transmission properties and selective generation of higher harmonics.
We investigate non-diffracting hollow-core nonlinear optical waves propagating in a layered nanoscaled metal-dielectric structure characterized by a very small average linear dielectric permittivity (Nonlinear Epsilon-Near-Zero metamaterial). We anal ytically show that hollow-core waves have a power flow exactly vanishing at a central region and exhibiting a sharp sloped profile at the edges of the regions surrounding the core. Physically, the absence of power flow at the core region is due to the vanishing of the transverse component of the electric displacement field, condition that can be satisfied by the full compensation between the nonlinear and linear dielectric contribution.
We consider a sub-wavelength periodic layered medium whose slabs are filled by arbitrary linear metamaterials and standard nonlinear Kerr media and we show that the homogenized medium behaves as a Kerr medium whose parameters can assume values not av ailable in standard materials. Exploiting such a parameter availability, we focus on the situation where the linear relative dielectric permittivity is very small thus allowing the observation of the extreme nonlinear regime where the nonlinear polarization is comparable with or even greater than the linear part of the overall dielectric response. The behavior of the electromagnetic field in the extreme nonlinear regime is very peculiar and characterized by novel features as, for example, the transverse power flow reversing. In order to probe the novel regime, we consider a class of fields (transverse magnetic nonlinear guided waves) admitting full analytical description and we show that these waves are allowed to propagate even in media with $epsilon<0$ and $mu >0$ since the nonlinear polarization produces a positive overall effective permittivity. The considered nonlinear waves exhibit, in addition to the mentioned features, a number of interesting properties like hyper-focusing induced by the phase difference between the field components.
We theoretically prove that electromagnetic beams propagating through a nonlinear cubic metamaterial can exhibit a power flow whose direction reverses its sign along the transverse profile. This effect is peculiar of the hitherto unexplored extreme n onlinear regime where the nonlinear response is comparable or even greater than the linear contribution, a condition achievable even at relatively small intensities. We propose a possible metamaterial structure able to support the extreme conditions where the polarization cubic nonlinear contribution does not act as a mere perturbation of the linear part.
We propose and verify experimentally a new concept for achieving strong nonlinear coupling between the electromagnetic and elastic properties in metamaterials. This coupling is provided through a novel degree of freedom in metamaterial design: intern al rotation within structural elements. Our meta-atoms have high sensitivity to electromagnetic wave power, and the elastic and electromagnetic properties can be independently designed to optimise the response. We demonstrate a rich range of nonlinear phenomena including self-tuning and bistability, and provide a comprehensive experimental demonstration of the predicted effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا