ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical hollow-core waves in nonlinear Epsilon-Near-Zero metamaterials

146   0   0.0 ( 0 )
 نشر من قبل Alessandro Ciattoni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate non-diffracting hollow-core nonlinear optical waves propagating in a layered nanoscaled metal-dielectric structure characterized by a very small average linear dielectric permittivity (Nonlinear Epsilon-Near-Zero metamaterial). We analytically show that hollow-core waves have a power flow exactly vanishing at a central region and exhibiting a sharp sloped profile at the edges of the regions surrounding the core. Physically, the absence of power flow at the core region is due to the vanishing of the transverse component of the electric displacement field, condition that can be satisfied by the full compensation between the nonlinear and linear dielectric contribution.



قيم البحث

اقرأ أيضاً

Optical materials with vanishing dielectric permittivity, known as epsilon-near-zero (ENZ) materials, have been shown to possess enhanced nonlinear optical responses in their ENZ region. These strong nonlinear optical properties have been firmly esta blished in homogeneous materials; however, it is as of yet unclear whether metamaterials with effective optical parameters can exhibit a similar enhancement. Here, we probe an optical ENZ metamaterial composed of a subwavelength periodic stack of alternating Ag and SiO$_2$ layers and measure a nonlinear refractive index $n_2 = (1.2 pm 0.1) times 10^{-12}$ m$^2$/W and nonlinear absorption coefficient $beta = (-1.5 pm 0.2) times 10^{-5}$ m/W at its effective zero-permittivity wavelength. The measured $n_2$ is $10^7$ times larger than $n_2$ of fused silica and four times larger than that the $n_2$ of silver. We observe that the nonlinear enhancement in $n_2$ scales as $1/(n_0 mathrm{Re}[n_0])$, where $n_0$ is the linear effective refractive index. As opposed to homogeneous ENZ materials, whose optical properties are dictated by their intrinsic material properties and hence are not widely tunable, the zero-permittivity wavelength of the demonstrated metamaterials may be chosen to lie anywhere within the visible spectrum by selecting the right thicknesses of the sub-wavelength layers. Consequently, our results offer the promise of a means to design metamaterials with large nonlinearities for applications in nanophotonics at any specified optical wavelength.
Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer h as strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Equal-to-Zero (EEZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the EEZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial.
An optical topological transition is defined as the change in the photonic isofrequency surface around epsilon-near-zero (ENZ) frequencies which can considerably change the spontaneous emission of a quantum emitter placed near a metamaterial slab. He re, we show that due to the strong Kerr nonlinearity at ENZ frequencies, a high power pulse can induce a sudden transition in the topology of the iso-frequency dispersion curve, leading to a significant change in the transmission of propagating as well as evanescent waves through the metamaterial slab. This evanescent wave switch effect allows for the control of spontaneous emission through modulation of the Purcell effect. We develop a theory of the enhanced nonlinear response of ENZ media to s and p polarized inputs and show that this nonlinear effect is stronger for p polarization and is almost independent of the incident angle. We perform finite-difference time-domain (FDTD) simulations to demonstrate the transient response of the metamaterial slab to an ultrafast pulse and fast switching of the Purcell effect at the sub-picosecond scale. The Purcell factor changes at ENZ by almost a factor of three which is an order of magnitude stronger than that away from ENZ. We also show that due to the inhomogeneous spatial field distribution inside the multilayer metal-dielectric super-lattice, a unique spatial topological transition metamaterial can be achieved by the control pulse induced nonlinearity. Our work can lead to ultra-fast control of quantum phenomena in ENZ metamaterials.
Ultrafast control of light-matter interactions constitutes a crucial feature in view of new technological frontiers of information processing. However, conventional optical elements are either static or feature switching speeds that are extremely low with respect to the timescales at which it is possible to control light. Here, we exploit high-quality-factor engineered epsilon-near-zero (ENZ) modes of a metal-insulator-metal nanocavity to realize an all-optical ultrafast modulation of the reflectance of light at a tailored wavelength. Our approach is based on the presence of the two, spectrally separated, ENZ absorption resonances of the cavity. Optical pumping of the system at its high energy ENZ mode leads to a strong red-shift of the low energy mode because of the transient increase of the local dielectric function, which leads to a sub-3-ps control of the reflectance at a specific wavelength with a relative modulation depth approaching 120%.
We observe unique absorption resonances in silver/silica multilayer-based epsilon-near-zero (ENZ) metamaterials that are related to radiative bulk plasmon-polariton states of thin-films originally studied by Ferrell (1958) and Berreman (1963). In the local effective medium, metamaterial descrip- tion, the unique effect of the excitation of these microscopic modes is counterintuitive and captured within the complex propagation constant, not the effective dielectric permittivities. Theoretical anal- ysis of the band structure for our metamaterials shows the existence of multiple Ferrell-Berreman branches with slow light characteristics. The demonstration that the propagation constant reveals subtle microscopic resonances can lead to the design of devices where Ferrell-Berreman modes can be exploited for practical applications ranging from plasmonic sensing to imaging and absorption enhancement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا