ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Differential Privacy of Bayesian Inference

64   0   0.0 ( 0 )
 نشر من قبل Christos Dimitrakakis
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study how to communicate findings of Bayesian inference to third parties, while preserving the strong guarantee of differential privacy. Our main contributions are four different algorithms for private Bayesian inference on proba-bilistic graphical models. These include two mechanisms for adding noise to the Bayesian updates, either directly to the posterior parameters, or to their Fourier transform so as to preserve update consistency. We also utilise a recently introduced posterior sampling mechanism, for which we prove bounds for the specific but general case of discrete Bayesian networks; and we introduce a maximum-a-posteriori private mechanism. Our analysis includes utility and privacy bounds, with a novel focus on the influence of graph structure on privacy. Worked examples and experiments with Bayesian na{i}ve Bayes and Bayesian linear regression illustrate the application of our mechanisms.



قيم البحث

اقرأ أيضاً

147 - Huanyu Zhang 2021
In modern settings of data analysis, we may be running our algorithms on datasets that are sensitive in nature. However, classical machine learning and statistical algorithms were not designed with these risks in mind, and it has been demonstrated th at they may reveal personal information. These concerns disincentivize individuals from providing their data, or even worse, encouraging intentionally providing fake data. To assuage these concerns, we import the constraint of differential privacy to the statistical inference, considered by many to be the gold standard of data privacy. This thesis aims to quantify the cost of ensuring differential privacy, i.e., understanding how much additional data is required to perform data analysis with the constraint of differential privacy. Despite the maturity of the literature on differential privacy, there is still inadequate understanding in some of the most fundamental settings. In particular, we make progress in the following problems: $bullet$ What is the sample complexity of DP hypothesis testing? $bullet$ Can we privately estimate distribution properties with a negligible cost? $bullet$ What is the fundamental limit in private distribution estimation? $bullet$ How can we design algorithms to privately estimate random graphs? $bullet$ What is the trade-off between the sample complexity and the interactivity in private hypothesis selection?
Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning context, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in M L often excessively reduces accuracy. We propose Bayesian differential privacy (BDP), which takes into account the data distribution to provide more practical privacy guarantees. We also derive a general privacy accounting method under BDP, building upon the well-known moments accountant. Our experiments demonstrate that in-distribution samples in classic machine learning datasets, such as MNIST and CIFAR-10, enjoy significantly stronger privacy guarantees than postulated by DP, while models maintain high classification accuracy.
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below 1 at the client level, and below 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.
84 - Xingyu Zhou , Jian Tan 2020
Motivated by the increasing concern about privacy in nowadays data-intensive online learning systems, we consider a black-box optimization in the nonparametric Gaussian process setting with local differential privacy (LDP) guarantee. Specifically, th e rewards from each user are further corrupted to protect privacy and the learner only has access to the corrupted rewards to minimize the regret. We first derive the regret lower bounds for any LDP mechanism and any learning algorithm. Then, we present three almost optimal algorithms based on the GP-UCB framework and Laplace DP mechanism. In this process, we also propose a new Bayesian optimization (BO) method (called MoMA-GP-UCB) based on median-of-means techniques and kernel approximations, which complements previous BO algorithms for heavy-tailed payoffs with a reduced complexity. Further, empirical comparisons of different algorithms on both synthetic and real-world datasets highlight the superior performance of MoMA-GP-UCB in both private and non-private scenarios.
We give a fast algorithm to optimally compose privacy guarantees of differentially private (DP) algorithms to arbitrary accuracy. Our method is based on the notion of privacy loss random variables to quantify the privacy loss of DP algorithms. The ru nning time and memory needed for our algorithm to approximate the privacy curve of a DP algorithm composed with itself $k$ times is $tilde{O}(sqrt{k})$. This improves over the best prior method by Koskela et al. (2020) which requires $tilde{Omega}(k^{1.5})$ running time. We demonstrate the utility of our algorithm by accurately computing the privacy loss of DP-SGD algorithm of Abadi et al. (2016) and showing that our algorithm speeds up the privacy computations by a few orders of magnitude compared to prior work, while maintaining similar accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا