ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Differential Privacy for Bayesian Optimization

85   0   0.0 ( 0 )
 نشر من قبل Xingyu Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the increasing concern about privacy in nowadays data-intensive online learning systems, we consider a black-box optimization in the nonparametric Gaussian process setting with local differential privacy (LDP) guarantee. Specifically, the rewards from each user are further corrupted to protect privacy and the learner only has access to the corrupted rewards to minimize the regret. We first derive the regret lower bounds for any LDP mechanism and any learning algorithm. Then, we present three almost optimal algorithms based on the GP-UCB framework and Laplace DP mechanism. In this process, we also propose a new Bayesian optimization (BO) method (called MoMA-GP-UCB) based on median-of-means techniques and kernel approximations, which complements previous BO algorithms for heavy-tailed payoffs with a reduced complexity. Further, empirical comparisons of different algorithms on both synthetic and real-world datasets highlight the superior performance of MoMA-GP-UCB in both private and non-private scenarios.


قيم البحث

اقرأ أيضاً

Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning context, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in M L often excessively reduces accuracy. We propose Bayesian differential privacy (BDP), which takes into account the data distribution to provide more practical privacy guarantees. We also derive a general privacy accounting method under BDP, building upon the well-known moments accountant. Our experiments demonstrate that in-distribution samples in classic machine learning datasets, such as MNIST and CIFAR-10, enjoy significantly stronger privacy guarantees than postulated by DP, while models maintain high classification accuracy.
Privacy concerns with sensitive data are receiving increasing attention. In this paper, we study local differential privacy (LDP) in interactive decentralized optimization. By constructing random local aggregators, we propose a framework to amplify L DP by a constant. We take Alternating Direction Method of Multipliers (ADMM), and decentralized gradient descent as two concrete examples, where experiments support our theory. In an asymptotic view, we address the following question: Under LDP, is it possible to design a distributed private minimizer for arbitrary closed convex constraints with utility loss not explicitly dependent on dimensionality? As an affiliated result, we also show that with merely linear secret sharing, information theoretic privacy is achievable for bounded colluding agents.
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below 1 at the client level, and below 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.
We prove a general connection between the communication complexity of two-player games and the sample complexity of their multi-player locally private analogues. We use this connection to prove sample complexity lower bounds for locally differentiall y private protocols as straightforward corollaries of results from communication complexity. In particular, we 1) use a communication lower bound for the hidden layers problem to prove an exponential sample complexity separation between sequentially and fully interactive locally private protocols, and 2) use a communication lower bound for the pointer chasing problem to prove an exponential sample complexity separation between $k$ round and $k+1$ round sequentially interactive locally private protocols, for every $k$.
We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor $k geq 1$ by which the sum of a protocols single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive $k$-compositional protocol into an equivalent sequentially interactive protocol with an $O(k)$ blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a family of problems such that for any $k$, there is a fully interactive $k$-compositional protocol which solves the problem, while no sequentially interactive protocol can solve the problem without at least an $tilde Omega(k)$ factor more examples. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems --- which include all simple hypothesis testing problems as a special case --- a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا