ﻻ يوجد ملخص باللغة العربية
Pair interactions between active particles need not follow Newtons third law. In this work we propose a continuum model of pattern formation due to non-reciprocal interaction between multiple species of scalar active matter. The classical Cahn-Hilliard model is minimally modified by supplementing the equilibrium Ginzburg-Landau dynamics with particle number conserving currents which cannot be derived from a free energy, reflecting the microscopic departure from action-reaction symmetry. The strength of the asymmetry in the interaction determines whether the steady state exhibits a macroscopic phase separation or a traveling density wave displaying global polar order. The latter structure, which is equivalent to an active self-propelled smectic phase, coarsens via annihilation of defects, whereas the former structure undergoes Ostwald ripening. The emergence of traveling density waves, which is a clear signature of broken time-reversal symmetry in this active system, is a generic feature of any multi-component mixture with microscopic non-reciprocal interactions.
Recently we considered a stochastic discrete model which describes fronts of cells invading a wound cite{KSS}. In the model cells can move, proliferate, and experience cell-cell adhesion. In this work we focus on a continuum description of this pheno
Collective motion is often modeled within the framework of active fluids, where the constituent active particles, when interactions with other particles are switched off, perform normal diffusion at long times. However, in biology, single-particle su
Biomolecular condensates in cells are often rich in catalytically-active enzymes. This is particularly true in the case of the large enzymatic complexes known as metabolons, which contain different enzymes that participate in the same catalytic pathw
Anomalous diffusion, manifest as a nonlinear temporal evolution of the position mean square displacement, and/or non-Gaussian features of the position statistics, is prevalent in biological transport processes. Likewise, collective behavior is often
Brownian motion is widely used as a paradigmatic model of diffusion in equilibrium media throughout the physical, chemical, and biological sciences. However, many real world systems, particularly biological ones, are intrinsically out-of-equilibrium