ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially resolved breakdown in reentrant quantum Hall states

407   0   0.0 ( 0 )
 نشر من قبل Alexandr Rossokhaty
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reentrant integer quantum Hall (RIQH) states are believed to be correlated electron solid phases, though their microscopic description remains unclear. As bias current increases, longitudinal and Hall resistivities measured for these states exhibit multiple sharp breakdown transitions, a signature unique to RIQH states. We present spatially-resolved measurements of RIQH breakdown that indicate these breakdown signatures can be ascribed to a phase boundary between broken-down and unbroken regions, spreading chirally from source and drain contacts as a function of bias current and passing voltage probes one by one. The chiral sense of the spreading is not set by the chirality of the edge state itself, instead depending on electron- or hole-like character of the RIQH state.

قيم البحث

اقرأ أيضاً

Reentrant integer quantum Hall (RIQH) states are believed to be correlated electron solid phases, though their microscopic description remains unclear. As bias current increases, longitudinal and Hall resistivities measured for these states exhibit m ultiple sharp breakdown transitions, a signature unique to RIQH states. A comparison of RIQH breakdown characteristics at multiple voltage probes indicates that these signatures can be ascribed to a phase boundary between broken-down and unbroken regions, spreading chirally from source and drain contacts as a function of bias current and passing voltage probes one by one. The chiral sense of the spreading is not set by the chirality of the edge state itself, instead depending on electron- or hole-like character of the RIQH state.
Measurements in very low disorder two-dimensional electrons confined to relatively wide GaAs quantum well samples with tunable density reveal reentrant $ u=1$ integer quantum Hall states in the lowest Landau level near filling factors $ u=4/5$ and 6/ 5. These states are not seen at low densities and become more prominent with increasing density and in wider wells. Our data suggest a close competition between different types of Wigner crystal states near these fillings. We also observe an intriguing disappearance and reemergence of the $ u=4/5$ fractional quantum Hall effect with increasing density.
We report on observation of an unconventional structure of the quantum Hall effect (QHE) in a $ p$-type HgTe/Cd$_x$Hg$_{1-x}$Te double quantum well (DQW) consisting of two HgTe layers of critical width. The observed QHE is a reentrant function of mag netic field between two $i=2$ states (plateaus at $rho_{xy}=h/ie^2$) separated by an intermediate $i=1$ state, which looks like some anomalous peak on the extra-long $i=2$ plateau when weakly expressed. The anomalous peak apparently separates two different regimes: a traditional QHE at relatively weak fields for a small density of mobile holes $p_s$ and a high-field QH structure with a $2-1$ plateau--plateau transition corresponding to much larger $p_s$. We show that only a part of holes, residing in an additional light hole subband in the DQW, participate in QHE at weak fields while the rest of holes is excluded into the reservoir formed in the lateral maximum of the valence subband. All the holes come into play at high fields due to a peculiar behavior of the zero-mode levels.
73 - W. Yang , H. Graef , X. Lu 2018
Breakdown of the quantum Hall effect (QHE) is commonly associated with an electric field approaching the inter Landau-level (LL) Zener field, ratio of the Landau gap and cyclotron radius. Eluded in semiconducting heterostructures, in spite of extensi ve investigation, the intrinsic Zener limit is reported here using high-mobility bilayer graphene and high-frequency current noise. We show that collective excitations arising from electron-electron interactions are essential. Beyond a noiseless ballistic QHE regime a large superpoissonian shot noise signals the breakdown via inter-LL scattering. The breakdown is ultimately limited by collective excitations in a regime where phonon and impurity scattering are quenched. The breakdown mechanism can be described by a Landau critical velocity as it bears strong similarities with the roton mechanism of superfluids.
The quantum anomalous Hall effect (QAHE) realizes dissipationless longitudinal resistivity and quantized Hall resistance without the need of an external magnetic field. However, when reducing the device dimensions or increasing the current density, a n abrupt breakdown of the dissipationless state occurs with a relatively small critical current, limiting the applications of the QAHE. We investigate the mechanism of this breakdown by studying multi-terminal devices and identified that the electric field created between opposing chiral edge states lies at the origin. We propose that electric-field-driven percolation of two-dimensional charge puddles in the gapped surface states of compensated topological-insulator films is the most likely cause of the breakdown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا