ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional Reentrant Quantum Hall Effect in a HgTe/CdHgTe Double Quantum Well

181   0   0.0 ( 0 )
 نشر من قبل Mikhail Yakunin Prof.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on observation of an unconventional structure of the quantum Hall effect (QHE) in a $ p$-type HgTe/Cd$_x$Hg$_{1-x}$Te double quantum well (DQW) consisting of two HgTe layers of critical width. The observed QHE is a reentrant function of magnetic field between two $i=2$ states (plateaus at $rho_{xy}=h/ie^2$) separated by an intermediate $i=1$ state, which looks like some anomalous peak on the extra-long $i=2$ plateau when weakly expressed. The anomalous peak apparently separates two different regimes: a traditional QHE at relatively weak fields for a small density of mobile holes $p_s$ and a high-field QH structure with a $2-1$ plateau--plateau transition corresponding to much larger $p_s$. We show that only a part of holes, residing in an additional light hole subband in the DQW, participate in QHE at weak fields while the rest of holes is excluded into the reservoir formed in the lateral maximum of the valence subband. All the holes come into play at high fields due to a peculiar behavior of the zero-mode levels.



قيم البحث

اقرأ أيضاً

We describe the observation of the circular and linear photogalvanic effects in HgTe/CdHgTe quantum wells. The interband absorption of mid-infrared radiation as well as the intrasubband absorption of terahertz (THz) radiation in the QWs structures is shown to cause a dc electric current due to these effects. The photocurrent magnitude and direction varies with the radiation polarization state and crystallographic orientation of the substrate in a simple way that can be understood from a phenomenological theory. The observed dependences of the photocurrent on the radiation wavelength and temperature are discussed.
We calculate the characteristics of interband HgTe-CdHgTe quantum-well infrared photodetectors (QWIPs). Due to a small probability of the electron capture into the QWs, the interband HgTe-CdHgTe QWIPs can exhibit very high photoconductive gain. Our a nalysis demonstrates significant potential advantages of these devices compared to the conventional CdHgTe photodetectors and the A$_3$B$_5$ heterostructures.
Magnetotransport measurements are presented on paramagnetic (Hg,Mn)Te quantum wells (QWs) with an inverted band structure. Gate-voltage controlled density dependent measurements reveal an unusual behavior in the transition regime from n- to p-type co nductance: A very small magnetic field of approximately 70 mT is sufficient to induce a transition into the nu = -1 quantum Hall state, which extends up to at least 10 Tesla. The onset field value remains constant for a unexpectedly wide gate-voltage range. Based on temperature and angle-dependent magnetic field measurements we show that the unusual behavior results from the realization of the quantum anomalous Hall state in these magnetically doped QWs.
The two-dimensional topological insulator phase has been observed previously in single HgTe-based quantum wells with inverted subband ordering. In double quantum wells (DQWs), coupling between the layers introduces additional degrees of freedom leadi ng to a rich phase picture. By studying local and nonlocal resistance in HgTe-based DQWs, we observe both the gapless semimetal phase and the topological insulator phase, depending on parameters of the samples and according to theoretical predictions. Our work establishes the DQWs as a promising platform for realization of multilayer topological insulators.
We report on the observation of the quantum Hall effect at high temperatures in HgTe quantum wells with a finite band gap and a thickness below and above the critical thickness $d_textnormal{c}$ that separates a conventional semiconductor from a two- dimensional topological insulator. At high carrier concentrations we observe a quantized Hall conductivity up to 60,K with energy gaps between Landau Levels of the order of 25,meV, in good agreement with the Landau Level spectrum obtained from $mathbf{kcdot p}$-calculations. Using the scaling approach for the plateau-plateau transition at $ u=2rightarrow 1$, we find the scaling coefficient $kappa =0.45 pm 0.04$ to be consistent with the universality of scaling theory and we do not find signs of increased electron-phonon interaction to alter the scaling even at these elevated temperatures. Comparing the high temperature limit of the quantized Hall resistance in HgTe quantum wells with a finite band gap with room temperature experiment in graphene, we find the energy gaps at the break-down of the quantization to exceed the thermal energy by the same order of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا