ﻻ يوجد ملخص باللغة العربية
Measurements in very low disorder two-dimensional electrons confined to relatively wide GaAs quantum well samples with tunable density reveal reentrant $ u=1$ integer quantum Hall states in the lowest Landau level near filling factors $ u=4/5$ and 6/5. These states are not seen at low densities and become more prominent with increasing density and in wider wells. Our data suggest a close competition between different types of Wigner crystal states near these fillings. We also observe an intriguing disappearance and reemergence of the $ u=4/5$ fractional quantum Hall effect with increasing density.
We present measurements of the real diagonal microwave conductivity of the reentrant insulating quantum Hall phases in the first excited Landau level at temperatures below 50 mK. A resonance is detected around filling factor $ u=2.58$ and weaker freq
We report on detailed experimental studies of a high-quality heterojunction insulated-gate field-effect transistor (HIGFET) to probe the particle-hole symmetry (PHS) of the FQHE states about half-filling in the lowest Landau level. The HIGFET was spe
Reentrant integer quantum Hall (RIQH) states are believed to be correlated electron solid phases, though their microscopic description remains unclear. As bias current increases, longitudinal and Hall resistivities measured for these states exhibit m
Many intriguing phenomena occur for electrons under strong magnetic fields. Recently, it was proposed that an appropriate strain texture in graphene can induce a synthetic gauge field, in which the electrons behave like in a real magnetic field. This
Specific heat has had an important role in the study of superfluidity and superconductivity, and could provide important information about the fractional quantum Hall effect as well. However, traditional measurements of the specific heat of a two-dim