ﻻ يوجد ملخص باللغة العربية
We report on experiments performed at low temperatures on aluminum covered silicon nanoelectromechanical resonators. The substantial difference observed between the mechanical dissipation in the normal and superconducting states measured within the same device unambiguously demonstrates the importance of normal-state electrons in the damping mechanism. The dissipative component becomes vanishingly small at very low temperatures in the superconducting state, leading to exceptional values for the quality factor of such small silicon structures. A critical discussion is given within the framework of the standard tunneling model.
We report on experimental demonstration of a new type of nanoelectromechanical resonators based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhe
Magneto-transport measurements on electrons confined to a 57 nm-wide, GaAs quantum well reveal that the correlated electron states at low Landau level fillings ($ u$) display a remarkable dependence on the symmetry of the electron charge distribution
A commercially available calorimeter has been used to investigate the specific heat of a high-quality kn single crystal. The addenda heat capacity of the calorimeter is determined in the temperature range $0.02 , mathrm{K} leq T leq 0.54 , mathrm{K}$
At the low temperatures of interstellar dust grains, it is well established that surface chemistry proceeds via diffusive mechanisms of H atoms weakly bound (physisorbed) to the surface. Until recently, however, it was unknown whether atoms heavier t
In a recent letter M. Lilly et al [PRL 82, 394 (1999)] have shown that a highly anisotropic state can arise in certain two dimensional electron systems. In the large square samples studied, resistances measured in the two perpendicular directions are