ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient diffusive mechanisms of O atoms at very low temperatures on surfaces of astrophysical interest

61   0   0.0 ( 0 )
 نشر من قبل Emanuele Congiu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At the low temperatures of interstellar dust grains, it is well established that surface chemistry proceeds via diffusive mechanisms of H atoms weakly bound (physisorbed) to the surface. Until recently, however, it was unknown whether atoms heavier than hydrogen could diffuse rapidly enough on interstellar grains to react with other accreted species. In addition, models still require simple reduction as well as oxidation reactions to occur on grains to explain the abundances of various molecules. In this paper we investigate O-atom diffusion and reactivity on a variety of astrophysically relevant surfaces (water ice of three different morphologies, silicate, and graphite) in the 6.5 - 25 K temperature range. Experimental values were used to derive a diffusion law that emphasizes that O atoms diffuse by quantum mechanical tunnelling at temperatures as low as 6.5 K. The rate of diffusion on each surface, based on modelling results, were calculated and an empirical law is given as a function of the surface temperature. Relative diffusion rates are k_H2Oice > k_sil > k_graph >> k_expected. The implications of an efficient O-atom diffusion over astrophysically relevant time-scales are discussed. Our findings show that O atoms can scan any available reaction partners (e.g., either another H atom, if available, or a surface radical like O or OH) at a faster rate than that of accretion. Also, as dense clouds mature H2 becomes far more abundant than H and the O/H ratio grows, the reactivity of O atoms on grains is such that O becomes one of the dominant reactive partners together with H.

قيم البحث

اقرأ أيضاً

Partition functions and dissociation equilibrium constants are presented for 291 diatomic molecules for temperatures in the range from near absolute zero to 10000 K, thus providing data for many diatomic molecules of astrophysical interest at low tem perature. The calculations are based on molecular spectroscopic data from the book of Huber and Herzberg with significant improvements from the literature, especially updated data for ground states of many of the most important molecules by Irikura. Dissociation energies are collated from compilations of experimental and theoretical values. Partition functions for 284 species of atoms for all elements from H to U are also presented based on data collected at NIST. The calculated data are expected to be useful for modelling a range of low density astrophysical environments, especially star-forming regions, protoplanetary disks, the interstellar medium, and planetary and cool stellar atmospheres. The input data, which will be made available electronically, also provides a possible foundation for future improvement by the community.
We report on the first results of experiments to measure the recombination rate of hydrogen on surfaces of astrophysical interest. Our measurements give lower values for the recombination efficiency (sticking probability S x probability of recombinat ion upon H-H encounter $gamma$) than model-based estimates. We propose that our results can be reconciled with average estimates of the recombination rate (1/2 n(H) n(g) v(H)A S $gamma$) from astronomical observations, if the actual surface of an average grain is rougher, and its area bigger, than the one considered in models.
Any evolving system can change of state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the c hemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at sub-monolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite of the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.
A commercially available calorimeter has been used to investigate the specific heat of a high-quality kn single crystal. The addenda heat capacity of the calorimeter is determined in the temperature range $0.02 , mathrm{K} leq T leq 0.54 , mathrm{K}$ . The data of the kn crystal imply the presence of a large $T^2$ contribution to the specific heat which gives evidence of $d$-wave order parameter symmetry in the superconducting state. To improve the measurements, a novel design for a calorimeter with a paramagnetic temperature sensor is presented. It promises a temperature resolution of $Delta T approx 0.1 , mathrm{mu K}$ and an addenda heat capacity less than $200 , mathrm{pJ/K}$ at $ T < 100 , mathrm{mK}$.
145 - K.J. Lulla , M. Defoort , C. Blanc 2015
We report on experiments performed at low temperatures on aluminum covered silicon nanoelectromechanical resonators. The substantial difference observed between the mechanical dissipation in the normal and superconducting states measured within the s ame device unambiguously demonstrates the importance of normal-state electrons in the damping mechanism. The dissipative component becomes vanishingly small at very low temperatures in the superconducting state, leading to exceptional values for the quality factor of such small silicon structures. A critical discussion is given within the framework of the standard tunneling model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا