ﻻ يوجد ملخص باللغة العربية
We study the debated contribution from thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis models. We investigate the Spectral Energy Distributions (SEDs) of a sample of 51 spectroscopically confirmed, high-z ($1.3<z_{rm spec}<2.7$), galaxies using three evolutionary population synthesis models with strong, mild and light TP-AGB. Our sample is the largest of spectroscopically confirmed galaxies on which such models are tested so far. Galaxies were selected as passive, but we model them using a variety of star formation histories in order not to be dependent on this pre-selection. We find that the observed SEDs are best fitted with a significant contribution of TP-AGB stars or with substantial dust attenuation. Without including reddening, TP-AGB-strong models perform better and deliver solutions consistent within $1sigma$ from the best-fit ones in the vast majority of cases. Including reddening, all models perform similarly. Using independent constraints from observations in the mid- and far-IR, we show that low/negligible dust attenuation, i.e. $E(B-V)lesssim 0.05$ , should be preferred for the SEDs of passively-selected galaxies. Given that TP-AGB-light models give systematically older ages for passive galaxies, we suggest number counts of passive galaxies at higher redshifts as a further test to discriminate among stellar population models.
Certain types of large amplitude AGB variable are proving to be powerful distance indicators that will rival Cepheids in the JWST era of high precision infrared photometry. These are predominantly found in old populations and have low mass progenitor
We present the near- through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red super giant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combin
The thermally-pulsing asymptotic giant branch (TP-AGB) experienced by low- and intermediate-mass stars is one of the most uncertain phases of stellar evolution and the models need to be calibrated with the aid of observations. To this purpose, we cou
We address the fundamental question of matching the rest-frame K-band luminosity function (LF) of galaxies over the Hubble time using semi-analytic models, after modification of the stellar population modelling. We include the Maraston evolutionary s
Reliable models of the thermally pulsing asymptotic giant branch (TP-AGB) phase are of critical importance across astrophysics, including our interpretation of the spectral energy distribution of galaxies, cosmic dust production, and enrichment of th