ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic Giant Branch Variables in Nearby Galaxies

53   0   0.0 ( 0 )
 نشر من قبل Patricia Whitelock
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Certain types of large amplitude AGB variable are proving to be powerful distance indicators that will rival Cepheids in the JWST era of high precision infrared photometry. These are predominantly found in old populations and have low mass progenitors. At the other end of the AGB mass-scale, large amplitude variables, particularly those undergoing hot bottom burning, are the most luminous representatives of their population. These stars are less than one Gyr old, are often losing mass copiously and are vital to our understanding of the integrated light of distant galaxies as well as to chemical enrichment. However, the evolution of such very luminous AGB variables is rapid and remains poorly understood. Here I discuss recent infrared observations of both low- and intermediate-mass Mira variables in the Local Group and beyond.

قيم البحث

اقرأ أيضاً

114 - Diego Capozzi 2015
We study the debated contribution from thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis models. We investigate the Spectral Energy Distributions (SEDs) of a sample of 51 spectroscopically confirmed, high-z ($1.3<z_{rm spec}<2.7$), galaxies using three evolutionary population synthesis models with strong, mild and light TP-AGB. Our sample is the largest of spectroscopically confirmed galaxies on which such models are tested so far. Galaxies were selected as passive, but we model them using a variety of star formation histories in order not to be dependent on this pre-selection. We find that the observed SEDs are best fitted with a significant contribution of TP-AGB stars or with substantial dust attenuation. Without including reddening, TP-AGB-strong models perform better and deliver solutions consistent within $1sigma$ from the best-fit ones in the vast majority of cases. Including reddening, all models perform similarly. Using independent constraints from observations in the mid- and far-IR, we show that low/negligible dust attenuation, i.e. $E(B-V)lesssim 0.05$ , should be preferred for the SEDs of passively-selected galaxies. Given that TP-AGB-light models give systematically older ages for passive galaxies, we suggest number counts of passive galaxies at higher redshifts as a further test to discriminate among stellar population models.
An electron-capture supernova (ECSN) is a core-collapse supernova (CCSN) explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass $M_{rm ms}sim7-9.5M_odot$. The explosion takes place in accordance with core bounce and subseq uent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a CCSN. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of $1.5times10^{50}$ erg and the small $^{56}$Ni mass of $2.5times10^{-3}M_odot$, we perform a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of $Lsim2times10^{44}$ erg/s and can evaporate circumstellar dust up to $Rsim10^{17}$ cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are $Lsim10^{42}$ erg/s and $tsim60-100$ days, respectively, and that a plateau is followed by a tail with a luminosity drop by $sim4$ mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires an ECSN model with a significantly low explosion energy of $Esim10^{48}$ erg.
We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, $rho_{ign} approx 2.1 times 10^6$ g cm$^{-3}$, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of $Delta M_{rm ZAMS}$/$Delta f_{rm{ov}}approx$ 1.6 $M_{odot}$. For zero overshoot, $f_{rm{ov}}$=0.0, our models in the ZAMS mass range $approx$ 8.9 to 11 $M_{odot}$ show off-center carbon ignition. For canonical amounts of overshooting, $f_{rm{ov}}$=0.016, the off-center carbon ignition range shifts to $approx$ 7.2 to 8.8 $M_{odot}$. Only systems with $f_{rm{ov}}$ $geq 0.01$ and ZAMS mass $approx$ 7.2-8.0 $M_{odot}$ show carbon burning is quenched a significant distance from the center. These results suggest a careful assessment of overshoot modeling approximations on claims that carbon burning quenches an appreciable distance from the center of the carbon core.
A long debated issue concerning the nucleosynthesis of neutron-rich elements in Asymptotic Giant Branch (AGB) stars is the identification of the neutron source. We report intermediate-mass (4 to 8 solar masses) AGB stars in our Galaxy that are rubidi um-rich owing to overproduction of the long-lived radioactive isotope 87Rb, as predicted theoretically 40 years ago. This represents a direct observational evidence that the 22Ne(alpha,n)25Mg reaction must be the dominant neutron source in these stars. These stars then challenge our understanding of the late stages of the evolution of intermediate-mass stars and would promote a highly variable Rb/Sr environment in the early solar nebula.
In this paper we present the evolution of a low mass model (initial mass M=1.5 Msun) with a very low metal content (Z=5x10^{-5}, equivalent to [Fe/H]=-2.44). We find that, at the beginning of the AGB phase, protons are ingested from the envelope in t he underlying convective shell generated by the first fully developed thermal pulse. This peculiar phase is followed by a deep third dredge up episode, which carries to the surface the freshly synthesized 13C, 14N and 7Li. A standard TP-AGB evolution, then, follows. During the proton ingestion phase, a very high neutron density is attained and the s-process is efficiently activated. We therefore adopt a nuclear network of about 700 isotopes, linked by more than 1200 reactions, and we couple it with the physical evolution of the model. We discuss in detail the evolution of the surface chemical composition, starting from the proton ingestion up to the end of the TP-AGB phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا