ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the thermally-pulsing asymptotic giant branch phase with resolved stellar populations in the Small Magellanic Cloud

102   0   0.0 ( 0 )
 نشر من قبل Giada Pastorelli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermally-pulsing asymptotic giant branch (TP-AGB) experienced by low- and intermediate-mass stars is one of the most uncertain phases of stellar evolution and the models need to be calibrated with the aid of observations. To this purpose, we couple high-quality observations of resolved stars in the Small Magellanic Cloud (SMC) with detailed stellar population synthesis simulations computed with the TRILEGAL code. The strength of our approach relies on the detailed spatially-resolved star formation history of the SMC, derived from the deep near-infrared photometry of the VISTA survey of the Magellanic Clouds, as well as on the capability to quickly and accurately explore a wide variety of parameters and effects with the COLIBRI code for the TP-AGB evolution. Adopting a well-characterized set of observations -- star counts and luminosity functions -- we set up a calibration cycle along which we iteratively change a few key parameters of the TP-AGB models until we eventually reach a good fit to the observations. Our work leads to identify two best-fitting models that mainly differ in the efficiencies of the third dredge-up and mass loss in TP-AGB stars with initial masses larger than about 3 M$_{odot}$. On the basis of these calibrated models we provide a full characterization of the TP-AGB stellar population in the SMC in terms of stellar parameters (initial masses, C/O ratios, carbon excess, mass-loss rates). Extensive tables of isochrones including these improved models are publicly available.

قيم البحث

اقرأ أيضاً

Reliable models of the thermally pulsing asymptotic giant branch (TP-AGB) phase are of critical importance across astrophysics, including our interpretation of the spectral energy distribution of galaxies, cosmic dust production, and enrichment of th e interstellar medium. With the aim of improving sets of stellar isochrones that include a detailed description of the TP-AGB phase, we extend our recent calibration of the AGB population in the Small Magellanic Cloud (SMC) to the more metal rich Large Magellanic Cloud (LMC). We model the LMC stellar populations with the TRILEGAL code, using the spatially-resolved star formation history derived from the VISTA survey. We characterize the efficiency of the third dredge-up by matching the star counts and the $K_{rm s}$-band luminosity functions of the AGB stars identified in the LMC. In line with previous findings, we confirm that, compared to the SMC, the third dredge-up in AGB stars of the LMC is somewhat less efficient, as a consequence of the higher metallicity. The predicted range of initial mass of C-rich stars is between $M_{rm i} approx 1.7 - 3~mathrm{M}_{odot}$ at $Z_{rm i} = 0.008$. We show how the inclusion of new opacity data in the carbon star spectra will improve the performance of our models. We discuss the predicted lifetimes, integrated luminosities and mass-loss rate distributions of the calibrated models. The results of our calibration are included in updated stellar isochrones publicly available.
Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass-loss and dust production can dramatically effect the chemical enrichme nt histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the ACS Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the number ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al. 2014, in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging -1.59 < [Fe/H] < -0.56 and initial TP-AGB masses up to ~ 4 Msun, which include TP-AGB stars that undergo hot-bottom burning.
We started a photometric survey using the WFC3/UVIS instrument onboard the Hubble Space Telescope to search for multiple populations within Magellanic Cloud star clusters at various ages. In this paper, we introduce this survey. As first results of t his programme, we also present multi-band photometric observations of NGC 121 in different filters taken with the WFC3/UVIS and ACS/WFC instruments. We analyze the colour-magnitude diagram (CMD) of NGC 121, which is the only classical globular cluster within the Small Magellanic Cloud. Thereby, we use the pseudo-colour C_(F336W,F438W,F343N)=(F336W-F438W)-(F438W-F343N) to separate populations with different C and N abundances. We show that the red giant branch splits up in two distinct populations when using this colour combination. NGC 121 thus appears to be similar to Galactic globular clusters in hosting multiple populations. The fraction of enriched stars (N rich, C poor) in NGC 121 is about 32% +/- 3%, which is lower than the median fraction found in Milky Way globular clusters. The enriched population seems to be more centrally concentrated compared to the primordial one. These results are consistent with the recent results by Dalessandro et al. (2016). The morphology of the Horizontal Branch in a CMD using the optical filters F555W and F814W is best produced by a population with a spread in Helium of Delta(Y) =0.025+/-0.005.
Multiple stellar populations (MPs) are a distinct characteristic of Globular Clusters (GCs). Their general properties have been widely studied among main sequence, red giant branch (RGB) and horizontal branch (HB) stars, but a common framework is sti ll missing at later evolutionary stages. We studied the MP phenomenon along the AGB sequences in 58 GCs, observed with the Hubble Space Telescope in ultraviolet (UV) and optical filters. By using UV-optical color-magnitude diagrams, we selected the AGB members of each cluster and identified the AGB candidates of the metal-enhanced population in type II GCs. We studied the photometric properties of AGB stars and compared them to theoretical models derived from synthetic spectra analysis. We observe the following features: i) the spread of AGB stars in photometric indices sensitive to variations of light-elements and helium is typically larger than that expected from photometric errors; ii) the fraction of metal-enhanced stars in the AGB is lower than in the RGB in most of the type II GCs; iii) the fraction of 1G stars derived from the chromosome map of AGB stars in 15 GCs is larger than that of RGB stars; v) the AGB/HB frequency correlates with the average mass of the most helium-enriched population. These findings represent a clear evidence of the presence of MPs along the AGB of Galactic GCs and indicate that a significant fraction of helium-enriched stars, which have lower mass in the HB, does not evolve to the AGB phase, leaving the HB sequence towards higher effective temperatures, as predicted by the AGB-manque scenario.
We present the dust ejecta of the new stellar models for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase computed with the COLIBRI code. We use a formalism of dust growth coupled with a stationary wind for both M and C-stars. In the orig inal version of this formalism, the most efficient destruction process of silicate dust in M-giants is chemisputtering by H2 molecules. For these stars we find that dust grains can only form at relatively large radial distances (r~5 R*), where they cannot be efficiently accelerated, in agreement with other investigations. In the light of recent laboratory results, we also consider the alternative case that the condensation temperature of silicates is determined only by the competition between growth and free evaporation processes (i.e. no chemisputtering). With this latter approach we obtain dust condensation temperatures that are significantly higher (up to Tcond~1400 K) than those found when chemisputtering is included (Tcond~900 K), and in better agreement with condensation experiments. As a consequence, silicate grains can remain stable in inner regions of the circumstellar envelopes (r~2 R*), where they can rapidly grow and can be efficiently accelerated. With this modification, our models nicely reproduce the observed trend between terminal velocities and mass loss rates of Galactic M-giants. For C-stars the formalism is based on the homogeneous growth scheme where the key role is played by the carbon over oxygen excess. The models reproduce fairly well the terminal velocities of Galactic stars and there is no need to invoke changes in the standard assumptions. At decreasing metallicity the carbon excess becomes more pronounced and the efficiency of dust formation increases. This trend could be in tension with recent observational evidence in favour of a decreasing efficiency, at decreasing metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا