ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Aberration of Light in X-ray Free Electron Lasers

174   0   0.0 ( 0 )
 نشر من قبل Gianluca Geloni
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. Particle tracking shows that the electron beam direction changes after the kick, while the orientation of the microbunching wavefront stays unvaried. Therefore, electrons motion and wavefront normal have different directions. Coherent radiation emission in a downstream undulator is expected to be dramatically suppressed as soon as the kick angle becomes larger than the divergence of the output radiation. In fact, according to conventional treatments, coherent radiation is emitted along the normal to the microbunching wavefront. Here we show that kinematics predicts a surprising effect. Namely, a description of coherent undulator radiation in the laboratory frame yields the radical notion that, due light aberration, strong coherent radiation is produced along the direction of the kick. We hold a recent FEL study made at the LCLS as a direct experimental evidence that coherent undulator radiation can be kicked by an angle of about five times the rms radiation divergence without suppression. We put forward our kinematical description of this experiment.

قيم البحث

اقرأ أيضاً

The single-pulse spectrum of self-amplified spontaneous emission (SASE) free electron lasers (FELs) is characterized by random fluctuations in frequency. The typical spectrum bandwidth for a hard x-ray FEL is in the range of 10-20 eV and is comparabl e with the distance between energy levels of valence electrons in atoms an molecules. We calculate the rate of transitions in a quantum three-level system with the energy difference of several eV caused by such radiation and show that for x-ray intensities in the range of $10^{20}$ W/cm$^2$ the probability of the transition over the duration of the x-ray pulse is large. We argue that this effect can be used to modify the spectrum of a SASE FEL potentially making it more narrow.
A superconducting linear accelerator operating in continuous-wave mode could produce X-ray free electron lasers (XFEL) at megahertz repetition rate, with the capability that delivering wide spectral range coherent radiation to multi end stations. In this Letter, the energy recovery Linac (ERL) mode is proposed to flexibly control the electron beam energy for a continuous-wave superconducting Linac. Theoretical investigations and multi-dimensional numerical simulations are applied to the Linac case of Shanghai high-repetition-rate XFEL and extreme light facility. The results show that, with ERL operation in the last 25 cryo-modules, the strict requirements on RF power system could be significantly relaxed. And if one exhaust the RF power, the maximum electron beam energy can be enhanced from 8.74 GeV to 11.41GeV in ERL mode. The optimization of the ERL operation, the multi-energy electron beam transport and the XFEL performance improvements are presented.
364 - I. Agapov , G. Geloni , S. Tomin 2017
Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tun ing procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH cite{flash} to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH. We also discuss the potential of using machine learning and model-based techniques in tuning methods.
We study the perspectives of measuring the phenomenon of vacuum birefringence predicted by quantum electrodynamics using an x-ray free-electron laser (XFEL) alone. We devise an experimental scheme allowing the XFEL beam to collide with itself under a finite angle, and thus act as both pump and probe field for the effect. The signature of vacuum birefringence is encoded in polarization-flipped signal photons to be detected with high-purity x-ray polarimetry. Our findings for idealized scenarios underline that the discovery potential of solely XFEL-based setups can be comparable to those involving optical high-intensity lasers. For currently achievable scenarios, we identify several key details of the x-ray optical ingredients that exert a strong influence on the magnitude of the desired signatures.
The interaction between noncolinear laser and relativistic electron beams in static magnetic undulator has been studied within the framework of dispersion equations. For a free-electron laser without inversion (FELWI), the threshold parameters are fo und. The large-amplification regime should be used to bring an FELWI above the threshold laser power.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا