ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum birefringence at x-ray free-electron lasers

147   0   0.0 ( 0 )
 نشر من قبل Felix Karbstein
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the perspectives of measuring the phenomenon of vacuum birefringence predicted by quantum electrodynamics using an x-ray free-electron laser (XFEL) alone. We devise an experimental scheme allowing the XFEL beam to collide with itself under a finite angle, and thus act as both pump and probe field for the effect. The signature of vacuum birefringence is encoded in polarization-flipped signal photons to be detected with high-purity x-ray polarimetry. Our findings for idealized scenarios underline that the discovery potential of solely XFEL-based setups can be comparable to those involving optical high-intensity lasers. For currently achievable scenarios, we identify several key details of the x-ray optical ingredients that exert a strong influence on the magnitude of the desired signatures.

قيم البحث

اقرأ أيضاً

X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method. While synchrotrons have large communities of XAS users, its use on X-Ray Free Electron Lasers (XFEL) facilities has been rather limited. At a first glance, the relatively n arrow bandwidth and the highly fluctuating spectral structure of XFEL sources seem to prevent high-quality XAS measurements without accumulating over many shots. Here, we demonstrate for the first time the collection of single-shot XAS spectra on an XFEL, with error bars of only a few percent, over tens of eV. We show how this technique can be extended over wider spectral ranges towards Extended X-ray Absorption Fine Structure (EXAFS) measurements, by concatenating a few tens of single-shot measurements. Such results open indisputable perspectives for future femtosecond time resolved XAS studies, especially for transient processes that can be initiated at low repetition rate.
It is well-known that the Heisenberg-Euler-Schwinger effective Lagrangian predicts that a vacuum with a strong static electromagnetic field turns birefringent. We propose a scheme that can be implemented at the planned FCC-ee, to measure the nonlinea r effect of vacuum birefringence in electrodynamics arising from QED corrections. Our scheme employs a pulsed laser to create Compton backscattered photons off a high energy electron beam, with the FCC-ee as a particularly interesting example. These photons will pass through a strong static magnetic field, which changes the state of polarization of the radiation - an effect proportional to the photon energy. This change will be measured by the use of an aligned single-crystal, where a large difference in the pair production cross-sections can be achieved. In the proposed experimental setup the birefringence effect gives rise to a difference in the number of pairs created in the analyzing crystal, stemming from the fact that the initial laser light has a varying state of polarization, achieved with a rotating quarter wave plate. Evidence for the vacuum birefringent effect will be seen as a distinct peak in the Fourier transform spectrum of the pair-production rate signal. This tell-tale signal can be significantly above background with only few hours of measurement, in particular at high energies.
80 - B. King , T. Heinzl 2015
When exposed to intense electromagnetic fields, the quantum vacuum is expected to exhibit properties of a polarisable medium akin to a weakly nonlinear dielectric material. Various schemes have been proposed to measure such vacuum polarisation effect s using a combination of high power lasers. Motivated by several planned experiments, we provide an overview of experimental signatures that have been suggested to confirm this prediction of quantum electrodynamics of real photon-photon scattering.
We present the current status and outlook of the optical characterization of the polarimeter at the Bir{e}fringence Magnetique du Vide (BMV) experiment. BMV is a polarimetric search for the QED predicted anisotropy of vacuum in the presence of extern al electromagnetic fields. The main challenge faced in this fundamental test is the measurement of polarization ellipticity on the order of ${10^{-15}}$ induced in linearly polarized laser field per pass through a magnetic field having an amplitude and length ${B^{2}L=100,mathrm{T}^{2}mathrm{m}}$. This challenge is addressed by understanding the noise sources in precision cavity-enhanced polarimetry. In this paper we discuss the first investigation of dynamical birefringence in the signal-enhancing cavity as a result of cavity mirror motion.
We discuss the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. Particle tracking shows that the electron beam direction changes afte r the kick, while the orientation of the microbunching wavefront stays unvaried. Therefore, electrons motion and wavefront normal have different directions. Coherent radiation emission in a downstream undulator is expected to be dramatically suppressed as soon as the kick angle becomes larger than the divergence of the output radiation. In fact, according to conventional treatments, coherent radiation is emitted along the normal to the microbunching wavefront. Here we show that kinematics predicts a surprising effect. Namely, a description of coherent undulator radiation in the laboratory frame yields the radical notion that, due light aberration, strong coherent radiation is produced along the direction of the kick. We hold a recent FEL study made at the LCLS as a direct experimental evidence that coherent undulator radiation can be kicked by an angle of about five times the rms radiation divergence without suppression. We put forward our kinematical description of this experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا