ترغب بنشر مسار تعليمي؟ اضغط هنا

A high obliquity orbit for the hot-Jupiter HATS-14b transiting a 5400K star

129   0   0.0 ( 0 )
 نشر من قبل George Zhou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a spin-orbit misalignment for the hot-Jupiter HATS-14b, measuring a projected orbital obliquity of |lambda|= 76 -5/+4 deg. HATS-14b orbits a high metallicity, 5400 K G dwarf in a relatively short period orbit of 2.8 days. This obliquity was measured via the Rossiter-McLaughlin effect, obtained with observations from Keck-HIRES. The velocities were extracted using a novel technique, optimised for low signal-to-noise spectra, achieving a high precision of 4 m/s point-to-point scatter. However, we caution that our uncertainties may be underestimated. Due to the low rotational velocity of the star, the detection significance is dependent on the vsini prior that is imposed in our modelling. Based on trends observed in the sample of hot Jupiters with obliquity measurements, it has been suggested that these planets modify the spin axes of their host stars, with an efficiency that depends on the stellar type and orbital period of the system. In this framework, short-period planets around stars with surface convective envelopes, like HATS-14b, are expected to have orbits that are aligned with the spin axes of their host stars. HATS-14b, however, is a significant outlier from this trend, challenging the effectiveness of the tidal realignment mechanism.



قيم البحث

اقرأ أيضاً

122 - A. Jordan , R. Brahm , G.A. Bakos 2014
We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V=13.46 mag G star. HATS-4b has a period of P = 2.5167 d, mass of Mp = 1.32 Mj, radius of Rp = 1.02 Rj and density of rho_p = 1.55 +- 0.16 g/cm^3 ~ 1.24 rhoj . The host star has a mass of 1.00 Msun, a radius of 0.92 Rsun and a very high metallicity [Fe/H]= 0.43 +- 0.08. HATS-4b is among the densest known planets with masses between 1-2 Mj and is thus likely to have a significant content of heavy elements of the order of 75 Mearth. In this paper we present the data reduction, radial velocity measurement and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique to estimate simultaneously vsini and macroturbulence using high resolution spectra.
We report the discovery of HATS-13b and HATS-14b, two hot-Jupiter transiting planets discovered by the HATSouth survey. The host stars are quite similar to each other (HATS-13: V = 13.9 mag, M* = 0.96 Msun, R* = 0.89 Rsun, Teff = 5500 K, [Fe/H] = 0.0 5; HATS-14: V = 13.8 mag, M* = 0.97 Msun, R* = 0.93 Rsun, Teff = 5350 K, [Fe/H] = 0.33) and both the planets orbit around them with a period of roughly 3 days and a separation of roughly 0.04 au. However, even though they are irradiated in a similar way, the physical characteristics of the two planets are very different. HATS-13b, with a mass of Mp = 0.543 MJ and a radius of Rp = 1.212 RJ, appears as an inflated planet, while HATS-14b, having a mass of Mp = 1.071 MJ and a radius of Rp = 1.039 RJ, is only slightly larger in radius than Jupiter.
We present the discovery of a hot Jupiter transiting an F star in a close visual (0.3 sky projected angular separation) binary system. The dilution of the host stars light by the nearly equal magnitude stellar companion (~ 0.5 magnitudes fainter) sig nificantly affects the derived planetary parameters, and if left uncorrected, leads to an underestimate of the radius and mass of the planet by 10% and 60%, respectively. Other published exoplanets, which have not been observed with high-resolution imaging, could similarly have unresolved stellar companions and thus have incorrectly derived planetary parameters. Kepler-14b (KOI-98) has a period of P = 6.790 days and correcting for the dilution, has a mass of Mp = 8.40 +0.19-0.18 MJ and a radius of Rp = 1.136 +0.073-0.054 RJ, yielding a mean density of rho = 7.1 +- 1.1 g cm-3.
275 - D. Bayliss , G. Zhou , K. Penev 2013
We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F-dwarf star. HATS-3b has a period of P = 3.5479d, mass of Mp = 1.07MJ, and radius of Rp = 1.38RJ. Given the radius of the planet, the brightn ess of the host star, and the stellar rotational velocity (vsini = 9.0km/s), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces logg and Teff parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity semi-amplitudes as low as 1 km/s.
We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V=12.4) G-type (M$_{star}$=1.131 $pm$ 0.030 M$_{odot}$, R$_{star}$=1.091$^{+0.070}_{-0.046}$ R$_{star}$) metal-rich ([Fe/H]= +0.3 dex) host star in a circular orbit with a period of P=16.2546 days. HATS-17b has a very compact radius of 0.777 $pm$ 0.056 R$_J$ given its Jupiter-like mass of 1.338 $pm$ 0.065 M$_J$. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17b will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا