ترغب بنشر مسار تعليمي؟ اضغط هنا

HATS-4b: A Dense Hot-Jupiter Transiting a Super Metal-Rich G Star

122   0   0.0 ( 0 )
 نشر من قبل Andres Jordan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V=13.46 mag G star. HATS-4b has a period of P = 2.5167 d, mass of Mp = 1.32 Mj, radius of Rp = 1.02 Rj and density of rho_p = 1.55 +- 0.16 g/cm^3 ~ 1.24 rhoj. The host star has a mass of 1.00 Msun, a radius of 0.92 Rsun and a very high metallicity [Fe/H]= 0.43 +- 0.08. HATS-4b is among the densest known planets with masses between 1-2 Mj and is thus likely to have a significant content of heavy elements of the order of 75 Mearth. In this paper we present the data reduction, radial velocity measurement and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique to estimate simultaneously vsini and macroturbulence using high resolution spectra.



قيم البحث

اقرأ أيضاً

258 - G. Kovacs 2007
We describe the discovery of HAT-P-4b, a low-density extrasolar planet transiting BD+36 2593, a V = 11.2 mag slightly evolved metal-rich late F star. The planets orbital period is 3.056536+/-0.000057 d with a mid-transit epoch of 2,454,245.8154 +/- 0 .0003 (HJD). Based on high-precision photometric and spectroscopic data, and by using transit light curve modeling, spectrum analysis and evolutionary models, we derive the following planet parameters: Mp= 0.68 +/- 0.04 MJ, Rp= 1.27 +/- 0.05 RJ, rho = 0.41 +/- 0.06 g cm-3 and a = 0.0446 +/- 0.0012 AU. Because of its relatively large radius, together with its assumed high metallicity of that of its parent star, this planet adds to the theoretical challenges to explain inflated extrasolar planets.
We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planets mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.
We report the discovery of four transiting hot Jupiters from the HATSouth survey: HATS-39b, HATS-40b, HATS41b and HATS-42b. These discoveries add to the growing number of transiting planets orbiting moderately bright (12.5 < V < 13.7) F dwarf stars o n short (2-5 day) periods. The planets have similar radii, ranging from 1.33(+0.29/-0.20) R_J for HATS-41b to 1.58(+0.16/-0.12) R_J for HATS-40b. Their masses and bulk densities, however, span more than an order of magnitude. HATS-39b has a mass of 0.63 +/- 0.13 M_J, and an inflated radius of 1.57 +/- 0.12 R_J, making it a good target for future transmission spectroscopic studies. HATS-41b is a very massive 9.7 +/- 1.6 M_J planet and one of only a few hot Jupiters found to date with a mass over 5 M_J. This planet orbits the highest metallicity star ([Fe/H] = 0.470 +/- 0.010) known to host a transiting planet and is also likely on an eccentric orbit. The high mass, coupled with a relatively young age (1.34 +0.31/-0.51 Gyr) for the host star, are factors that may explain why this planets orbit has not yet circularised.
IW ../submit_V2/abstract.txt ( Row 1 Col 1 6:48 Ctrl-K H for help We report the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune with a mass of 0.120+/-0.012MJ, a radius of 0.563+/-(0.046,0.034)RJ, and an orbital period of 3.1 853days. The host star is a moderately bright (V=13.340+/-0.010mag, K_S=10.976+/-0.026mag) K dwarf star with a mass of 0.849+/-0.027Msun , a radius of 0.815+/-(0.049,-0.035)Rsun, and a metallicity of [Fe/H]=+0.250+/-0.080. The star is photometrically quiet to within the precision of the HATSouth measurements and has low RV jitter. HATS-7b is the second smallest radius planet discovered by a wide-field ground-based transit survey, and one of only a handful of Neptune-size planets with mass and radius determined to 10% precision. Theoretical modeling of HATS-7b yields a hydrogen-helium fraction of 18+/-4% (rock-iron core and H2-He envelope), or 9+/-4% (ice core and H2-He envelope), i.e.it has a composition broadly similar to that of Uranus and Neptune, and very different from that of Saturn, which has 75% of its mass in H2-He. Based on a sample of transiting exoplanets with accurately (<20%) determined parameters, we establish approximate power-law relations for the envelopes of the mass-density distribution of exoplanets. HATS-7b, which, together with the recently discovered HATS-8b, is one of the first two transiting super-Neptunes discovered in the Southern sky, is a prime target for additional follow-up observations with Southern hemisphere facilities to characterize the atmospheres of Super-Neptunes (which we define as objects with mass greater than that of Neptune, and smaller than halfway between that of Neptune and Saturn, i.e. 0.054 MJ<Mp<0.18 MJ).
We report a spin-orbit misalignment for the hot-Jupiter HATS-14b, measuring a projected orbital obliquity of |lambda|= 76 -5/+4 deg. HATS-14b orbits a high metallicity, 5400 K G dwarf in a relatively short period orbit of 2.8 days. This obliquity was measured via the Rossiter-McLaughlin effect, obtained with observations from Keck-HIRES. The velocities were extracted using a novel technique, optimised for low signal-to-noise spectra, achieving a high precision of 4 m/s point-to-point scatter. However, we caution that our uncertainties may be underestimated. Due to the low rotational velocity of the star, the detection significance is dependent on the vsini prior that is imposed in our modelling. Based on trends observed in the sample of hot Jupiters with obliquity measurements, it has been suggested that these planets modify the spin axes of their host stars, with an efficiency that depends on the stellar type and orbital period of the system. In this framework, short-period planets around stars with surface convective envelopes, like HATS-14b, are expected to have orbits that are aligned with the spin axes of their host stars. HATS-14b, however, is a significant outlier from this trend, challenging the effectiveness of the tidal realignment mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا