ترغب بنشر مسار تعليمي؟ اضغط هنا

HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Days Circular Orbit

86   0   0.0 ( 0 )
 نشر من قبل Rafael Brahm
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V=12.4) G-type (M$_{star}$=1.131 $pm$ 0.030 M$_{odot}$, R$_{star}$=1.091$^{+0.070}_{-0.046}$ R$_{star}$) metal-rich ([Fe/H]=+0.3 dex) host star in a circular orbit with a period of P=16.2546 days. HATS-17b has a very compact radius of 0.777 $pm$ 0.056 R$_J$ given its Jupiter-like mass of 1.338 $pm$ 0.065 M$_J$. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17b will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet.



قيم البحث

اقرأ أيضاً

We report a spin-orbit misalignment for the hot-Jupiter HATS-14b, measuring a projected orbital obliquity of |lambda|= 76 -5/+4 deg. HATS-14b orbits a high metallicity, 5400 K G dwarf in a relatively short period orbit of 2.8 days. This obliquity was measured via the Rossiter-McLaughlin effect, obtained with observations from Keck-HIRES. The velocities were extracted using a novel technique, optimised for low signal-to-noise spectra, achieving a high precision of 4 m/s point-to-point scatter. However, we caution that our uncertainties may be underestimated. Due to the low rotational velocity of the star, the detection significance is dependent on the vsini prior that is imposed in our modelling. Based on trends observed in the sample of hot Jupiters with obliquity measurements, it has been suggested that these planets modify the spin axes of their host stars, with an efficiency that depends on the stellar type and orbital period of the system. In this framework, short-period planets around stars with surface convective envelopes, like HATS-14b, are expected to have orbits that are aligned with the spin axes of their host stars. HATS-14b, however, is a significant outlier from this trend, challenging the effectiveness of the tidal realignment mechanism.
We present the discovery of a hot-Jupiter transiting the V=9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a 1.31 -0.29/+0.28 Mj, 1.525 -0.060/+0.065 Rj hot-Jupiter in a 3.08 day period orbit misaligned at -115.9 +/- 4.1 deg to the ro tation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet over two transits. The nature of the spin-orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (alpha < 0.30 at 2 sigma significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of 1.635 -0.061/+0.066 Msun, effective temperature of 7454 +/- 49 K, and projected rotational velocity v sin I_* = 44.2 -1.3/+1.5 km/s; it is amongst the most massive, hottest, and most rapidly rotating of known planet hosts.
We report the discovery of four short period extrasolar planets transiting moderately bright stars from photometric measurements of the HATSouth network coupled to additional spectroscopic and photometric follow-up observations. While the planet mass es range from 0.26 to 0.90 M$_J$, the radii are all approximately a Jupiter radii, resulting in a wide range of bulk densities. The orbital period of the planets range from 2.7d to 4.7d, with HATS-43b having an orbit that appears to be marginally non-circular (e= 0.173$pm$0.089). HATS-44 is notable for a high metallicity ([Fe/H]= 0.320$pm$0.071). The host stars spectral types range from late F to early K, and all of them are moderately bright (13.3<V<14.4), allowing the execution of future detailed follow-up observations. HATS-43b and HATS-46b, with expected transmission signals of 2350 ppm and 1500 ppm, respectively, are particularly well suited targets for atmospheric characterisation via transmission spectroscopy.
We report the discovery of TOI-677 b, first identified as a candidate in light curves obtained within Sectors 9 and 10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI-677 b has a mass of M_p = 1.2 36$^{+0.069}_{-0.067}$ M_J, a radius of R_p = 1.170 +- 0.03 R_J,and orbits its bright host star (V=9.8 mag) with an orbital period of 11.23660 +- 0.00011 d, on an eccentric orbit with e = 0.435 +- 0.024. The host star has a mass of M_* = 1.181 +- 0.058 M_sun, a radius of R_* = 1.28 +- 0.03 R_sun, an age of 2.92$^{+0.80}_{-0.73}$ Gyr and solar metallicity, properties consistent with a main sequence late F star with T_eff = 6295 +- 77 K. We find evidence in the radial velocity measurements of a secondary long term signal which could be due to an outer companion. The TOI-677 b system is a well suited target for Rossiter-Mclaughlin observations that can constrain migration mechanisms of close-in giant planets.
We report the discovery of HAT-P-30b, a transiting exoplanet orbiting the V=10.419 dwarf star GSC 0208-00722. The planet has a period P=2.810595+/-0.000005 d, transit epoch Tc = 2455456.46561+/-0.00037 (BJD), and transit duration 0.0887+/-0.0015 d. T he host star has a mass of 1.24+/-0.04 Msun, radius of 1.21+/-0.05 Rsun, effective temperature 6304+/-88 K, and metallicity [Fe/H] = +0.13+/-0.08. The planetary companion has a mass of 0.711+/-0.028 Mjup, and radius of 1.340+/-0.065 Rjup yielding a mean density of 0.37+/-0.05 g cm^-3. We also present radial velocity measurements that were obtained throughout a transit that exhibit the Rossiter-McLaughlin effect. By modeling this effect we measure an angle of lambda = 73.5+/-9.0 deg between the sky projections of the planets orbit normal and the stars spin axis. HAT-P-30b represents another example of a close-in planet on a highly tilted orbit, and conforms to the previously noted pattern that tilted orbits are more common around stars with Teff > 6250 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا