ترغب بنشر مسار تعليمي؟ اضغط هنا

The coronal evolution of pre-main-sequence stars

127   0   0.0 ( 0 )
 نشر من قبل Scott Gregory
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The bulk of X-ray emission from pre-main-sequence (PMS) stars is coronal in origin. We demonstrate herein that stars on Henyey tracks in the Hertzsprung-Russell diagram have lower $log(L_X/L_ast)$, on average, than stars on Hayashi tracks. This effect is driven by the decay of $L_X$ once stars develop radiative cores. $L_X$ decays faster with age for intermediate mass PMS stars, the progenitors of main sequence A-type stars, compared to those of lower mass. As almost all main sequence A-type stars show no detectable X-ray emission, we may already be observing the loss of their coronae during their PMS evolution. Although there is no direct link between the size or mass of the radiative core and $L_X$, the longer stars have spent with partially convective interiors, the weaker their X-ray emission becomes. This conference paper is a synopsis of Gregory, Adams and Davies (2016).



قيم البحث

اقرأ أيضاً

Low-mass pre-main sequence (PMS) stars are strong and variable X-ray emitters, as has been well established by EINSTEIN and ROSAT observatories. It was originally believed that this emission was of thermal nature and primarily originated from coronal activity (magnetically confined loops, in analogy with Solar activity) on contracting young stars. Broadband spectral analysis showed that the emission was not isothermal and that elemental abundances were non-Solar. The resolving power of the Chandra and XMM X-ray gratings spectrometers have provided the first, tantalizing details concerning the physical conditions such as temperatures, densities, and abundances that characterize the X-ray emitting regions of young star. These existing high resolution spectrometers, however, simply do not have the effective area to measure diagnostic lines for a large number of PMS stars over required to answer global questions such as: how does magnetic activity in PMS stars differ from that of main sequence stars, how do they evolve, what determines the population structure and activity in stellar clusters, and how does the activity influence the evolution of protostellar disks. Highly resolved (R>3000) X-ray spectroscopy at orders of magnitude greater efficiency than currently available will provide major advances in answering these questions. This requires the ability to resolve the key diagnostic emission lines with a precision of better than 100 km/s.
We present new sub-arcsecond (0.7) Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the 1.3 mm continuum emission from circumstellar disks around 11 low and intermediate mass pre-main sequence stars. High resolution ob servations for 3 additional sources were obtained from literature. In all cases the disk emission is spatially resolved. We adopt a self consistent accretion disk model based on the similarity solution for the disk surface density and constrain the dust radial density distribution on spatial scales of about 40 AU. Disk surface densities appear to be correlated with the stellar ages where the characteristic disk radius increases from ~ 20 AU to 100 AU over about 5 Myr. This disk expansion is accompanied by a decrease in the mass accretion rate, suggesting that our sample disks form an evolutionary sequence. Interpreting our results in terms of the temporal evolution of a viscous $alpha$-disk, we estimate (i) that at the beginning of the disk evolution about 60% of the circumstellar material was located inside radii of 25--40 AU, (ii) that disks formed with masses from 0.05 to 0.4 M$_{sun}$ and (iii) that the viscous timescale at the disk initial radius is about 0.1-0.3 Myr. Viscous disk models tightly link the surface density $Sigma(R)$ with the radial profile of the disk viscosity $ u(R) propto R^{gamma}$. We find values of $gamma$ ranging from -0.8 to 0.8, suggesting that the viscosity dependence on the orbital radius can be very different in the observed disks. Adopting the $alpha$ parameterization for the viscosity, we argue that $alpha$ must decrease with the orbital radius and that it may vary between 0.5 and $10^{-4}$. (abridged)
189 - D. Fedele 2009
We present initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0 - M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of ages between 1 - 50 Myr. The fraction of accreting stars decreases from ~60% at 1.5 - 2 Myr to ~2% at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of $10^{-11}$ Msun yr-1. We compared the fraction of stars showing ongoing accretion (f_acc) to the fraction of stars with near-to-mid infrared excess (f_IRAC). In most cases we find f_acc < f_IRAC, i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95% of the stellar population has stopped accreting material at a rate of > 10^{-11} Msun yr-1, while ~20% of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (t_acc) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (t_IRAC) of 2.9 Myr. Planet formation, and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.
Pre-main sequence (PMS) stars evolve into main sequence (MS) phase over a period of time. Interestingly, we found a scarcity of studies in existing literature that examines and attempts to better understand the stars in PMS to MS transition phase. Th e purpose of the present study is to detect such rare stars, which we named as Transition Phase (TP) candidates - stars evolving from the PMS to the MS phase. We identified 98 TP candidates using photometric analysis of a sample of 2167 classical Be (CBe) and 225 Herbig Ae/Be (HAeBe) stars. This identification is done by analyzing the near- and mid-infrared excess and their location in the optical color-magnitude diagram. The age and mass of 58 of these TP candidates are determined to be between 0.1-5 Myr and 2-10.5 M$_odot$, respectively. The TP candidates are found to possess rotational velocity and color excess values in between CBe and HAeBe stars, which is reconfirmed by generating a set of synthetic samples using the machine learning approach.
131 - F. Martins , A. Palacios 2016
We provide an observational view of evolutionary models in the Hertzsprung--Russell diagram, on the main sequence. For that we computed evolutionary models with the code STAREVOL for 15 < M/Msun < 100. We subsequently calculated atmosphere models at specific points along the evolutionary tracks, using the code CMFGEN. Synthetic spectra obtained in this way were classified as if they were observational data. We tested our spectral classification by comparison to observed spectra of various stars. We also compared our results with empirical data of a large number of OB stars. We obtain spectroscopic sequences along evolutionary tracks. In our computations, the earliest O stars (O2-3.5) appear only above ~50 Msun. For later spectral types, a similar mass limit exists, but is lower. A luminosity class V does not correspond to the entire main sequence. This only holds for the 15 Msun track. As mass increases, a larger portion of the main sequence is spent in luminosity class III. Above 50 Msun, supergiants appear before the end of core-hydrogen burning. Dwarf stars do not occur on the zero-age main sequence above 80 Msun. Consequently, the distribution of luminosity class V in the HR diagram cannot be used to constrain the size of the convective core. The distribution of dwarfs and giants in the HR diagram agrees well with the location of stars analyzed by means of quantitative spectroscopy. For supergiants, there is a slight discrepancy in the sense that luminosity class I is observed slightly earlier than our predictions. This is mainly due to wind densities that affect the luminosity class diagnostic lines. We predict an upper mass limit for dwarf stars (~60 Msun) that is found consistent with the rarity of O2V stars in the Galaxy. Stars with WNh spectral type are not predicted by our models. Stronger winds are required to produce the characteristic emission lines of these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا