ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical fluxes in coupled $cal PT$-symmetric photonic structures

163   0   0.0 ( 0 )
 نشر من قبل Li Ge
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we first examine transverse and longitudinal fluxes in a $cal PT$-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the $cal PT$ transition in a dimer can be regarded as a classical effect, despite its analogy to $cal PT$-symmetric quantum mechanics. The longitudinal flux also indicates that the so-called giant amplification in the $cal PT$-symmetric phase is a sub-exponential behavior and does not outperform a single gain waveguide. The transverse flux, on the other hand, reveals that the apparent power oscillations between the gain and loss waveguides in the $cal PT$-symmetric phase can be deceiving in certain cases, where the transverse power transfer is in fact unidirectional. We also show that this power transfer cannot be arbitrarily fast even when the exceptional point is approached. Finally, we go beyond the coupled-mode theory by using the paraxial wave equation and also extend our discussions to a $cal PT$ diamond and a one-dimensional periodic lattice.

قيم البحث

اقرأ أيضاً

We show that non-linear optical structures involving a balanced gain-loss profile, can act as unidirectional optical valves. This is made possible by exploiting the interplay between the fundamental symmetries of parity (P) and time (T), with optical nonlinear effects. This novel unidirectional dynamics is specifically demonstrated for the case of an integrable PT-symmetric nonlinear system.
We demonstrate the existence of exceptional points of degeneracy (EPD) of periodic eigenstates in non-Hermitian coupled chains of dipolar scatterers. Guided modes supported by these structures can exhibit an EPD in their dispersion diagram at which t wo or more Bloch eigenstates coalesce, in both their eigenvectors and eigenvalues. We show a second-order modal EPD associated with the parity-time ($cal{PT}$) symmetry condition, at which each particle pair in the double chain exhibits balanced gain and loss. Furthermore, we also demonstrate a fourth-order EPD occurring at the band edge. Such degeneracy condition was previously referred to as a degenerate band edge in lossless anisotropic photonic crystals. Here, we rigorously show it under the occurrence of gain and loss balance for a discrete guiding system. We identify a more general regime of gain and loss balance showing that $cal{PT}$-symmetry is not necessary to realize EPDs. Furthermore, we investigate the degree of detuning of the EPD when the geometrical symmetry or balanced condition is broken. These findings open unprecedented avenues toward superior light localization and transport with application to high-Q resonators utilized in sensors, filters, low-threshold switching and lasing.
We introduce the notion of a ${cal PT}$-symmetric dimer with a $chi^{(2)}$ nonlinearity. Similarly to the Kerr case, we argue that such a nonlinearity should be accessible in a pair of optical waveguides with quadratic nonlinearity and gain and loss, respectively. An interesting feature of the problem is that because of the two harmonics, there exist in general two distinct gain/loss parameters, different values of which are considered herein. We find a number of traits that appear to be absent in the more standard cubic case. For instance, bifurcations of nonlinear modes from the linear solutions occur in two different ways depending on whether the first or the second harmonic amplitude is vanishing in the underlying linear eigenvector. Moreover, a host of interesting bifurcation phenomena appear to occur including saddle-center and pitchfork bifurcations which our parametric variations elucidate. The existence and stability analysis of the stationary solutions is corroborated by numerical time-evolution simulations exploring the evolution of the different configurations, when unstable.
Parity-time (PT) symmetry has attracted a lot of attention since the concept of pseudo-Hermitian dynamics of open quantum systems was first demonstrated two decades ago. Contrary to their Hermitian counterparts, non-conservative environments a priori do not show real energy eigenvalues and unitary evolution. However, if PT-symmetry requirements are satisfied, even dissipative systems can exhibit real energy eigenvalues, thus ensuring energy conservation in the temporal average. In optics, PT-symmetry can be readily introduced by incorporating, in a balanced way, regions having optical gain and loss. However, all optical realizations have been restricted so far to a single transverse dimension (1D) such as optical waveguide arrays. In many cases, only losses were modulated relying on a scaling argument being valid for linear systems only. Both restrictions crucially limit potential applications. Here, we present an experimental platform for investigating the interplay of PT-symmetry and nonlinearity in two dimensions (2D) and observe nonlinear localization and soliton formation. Contrary to the typical dissipative solitons, we find a one-parametric family of solitons which exhibit properties similar to its conservative counterpart. In the limit of high optical power, the solitons collapse on a discrete network and give rise to an amplified, self-accelerating field.
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-d imensional lines of exceptional points. Here, we substantially expand the space of exceptional systems by designing two-dimensional surfaces of exceptional points, and find that symmetries are a key element to protect such exceptional surfaces. We construct them using symmetry-preserving non-Hermitian deformations of topological nodal lines, and analyze the associated symmetry, topology, and physical consequences. As a potential realization, we simulate a parity-time-symmetric 3D photonic crystal and indeed find the emergence of exceptional surfaces. Our work paves the way for future explorations of systems of exceptional points in higher dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا