ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyzing Uplink SINR and Rate in Massive MIMO Systems Using Stochastic Geometry

113   0   0.0 ( 0 )
 نشر من قبل Tianyang Bai
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a stochastic geometry framework to analyze the SINR and rate performance in a large-scale uplink massive MIMO network. Based on the model, expressions are derived for spatial average SINR distributions over user and base station distributions with maximum ratio combining (MRC) and zero-forcing (ZF) receivers. We show that using massive MIMO, the uplink SINR in certain urban marco-cell scenarios is limited by interference. In the interference-limited regime, the results reveal that for MRC receivers, a super-linear (polynomial) scaling law between the number of base station antennas and scheduled users per cell preserves the uplink SIR distribution, while a linear scaling applies to ZF receivers. ZF receivers are shown to outperform MRC receivers in the SIR coverage, and the performance gap is quantified in terms of the difference in the number of antennas to achieve the same SIR distribution. Numerical results verify the analysis. It is found that the optimal compensation fraction in fractional power control to optimize rate is generally different for MRC and ZF receivers. Besides, simulations show that the scaling results derived from the proposed framework apply to the networks where base stations are distributed according to a hexagonal lattice.



قيم البحث

اقرأ أيضاً

Massive Multiple-Input Multiple-Output (massive MIMO) is a variant of multi-user MIMO in which the number of antennas at each Base Station (BS) is very large and typically much larger than the number of users simultaneously served. Massive MIMO can b e implemented with Time Division Duplexing (TDD) or Frequency Division Duplexing (FDD) operation. FDD massive MIMO systems are particularly desirable due to their implementation in current wireless networks and their efficiency in situations with symmetric traffic and delay-sensitive applications. However, implementing FDD massive MIMO systems is known to be challenging since it imposes a large feedback overhead in the Uplink (UL) to obtain channel state information for the Downlink (DL). In recent years, a considerable amount of research is dedicated to developing methods to reduce the feedback overhead in such systems. In this paper, we use the sparse spatial scattering properties of the environment to achieve this goal. The idea is to estimate the support of the continuous, frequency-invariant scattering function from UL channel observations and use this estimate to obtain the support of the DL channel vector via appropriate interpolation. We use the resulting support estimate to design an efficient DL probing and UL feedback scheme in which the feedback dimension scales proportionally with the sparsity order of DL channel vectors. Since the sparsity order is much less than the number of BS antennas in almost all practically relevant scenarios, our method incurs much less feedback overhead compared with the currently proposed methods in the literature, such as those based on compressed-sensing. We use numerical simulations to assess the performance of our probing-feedback algorithm and compare it with these methods.
Massive multiple-input multiple-output (MIMO) is a key technology for improving the spectral and energy efficiency in 5G-and-beyond wireless networks. For a tractable analysis, most of the previous works on Massive MIMO have been focused on the syste m performance with complex Gaussian channel impulse responses under rich-scattering environments. In contrast, this paper investigates the uplink ergodic spectral efficiency (SE) of each user under the double scattering channel model. We derive a closed-form expression of the uplink ergodic SE by exploiting the maximum ratio (MR) combining technique based on imperfect channel state information. We further study the asymptotic SE behaviors as a function of the number of antennas at each base station (BS) and the number of scatterers available at each radio channel. We then formulate and solve a total energy optimization problem for the uplink data transmission that aims at simultaneously satisfying the required SEs from all the users with limited data power resource. Notably, our proposed algorithms can cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of the closed-form ergodic SE over Monte-Carlo simulations. Besides, the system can still provide the required SEs to many users even under congestion.
We study the impact of hardware impairments at the base station (BS) of an orthogonal frequency-division multiplexing (OFDM)-based massive multiuser (MU) multiple-input multiple-output (MIMO) uplink system. We leverage Bussgangs theorem to develop ac curate models for the distortions caused by nonlinear low-noise amplifiers, local oscillators with phase noise, and oversampling finite-resolution analog-to-digital converters. By combining the individual effects of these hardware models, we obtain a composite model for the BS-side distortion caused by nonideal hardware that takes into account its inherent correlation in time, frequency, and across antennas. We use this composite model to analyze the impact of BS-side hardware impairments on the performance of realistic massive MU-MIMO-OFDM uplink systems.
In this work, we investigate hybrid analog-digital beamforming (HBF) architectures for uplink cell-free (CF) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. {We first propose two HBF schemes, namely, decentralized HBF (D-HBF) and semi-centralized HBF (SC-HBF). In the former, both the digital and analog beamformers are generated independently at each AP based on the local channel state information (CSI). In contrast, in the latter, only the digital beamformer is obtained locally at the AP, whereas the analog beamforming matrix is generated at the central processing unit (CPU) based on the global CSI received from all APs. We show that the analog beamformers generated in these two HBF schemes provide approximately the same achievable rates despite the lower complexity of D-HBF and its lack of CSI requirement.} Furthermore, to reduce the power consumption, we propose a novel adaptive radio frequency (RF) chain-activation (ARFA) scheme, which dynamically activates/deactivates RF chains and their connected analog-to-digital converters (ADCs) and phase shifters (PSs) at the APs based on the CSI. For the activation of RF chains, low-complexity algorithms are proposed, which can achieve significant improvement in energy efficiency (EE) with only a marginal loss in the total achievable rate.
Opportunistic scheduling (OS) schemes have been proposed previously by the authors for multiuser MIMO-SDMA downlink systems with linear combining. In particular, it has been demonstrated that significant performance improvement can be achieved by inc orporating low-complexity linear combining techniques into the design of OS schemes for MIMO-SDMA. However, this previous analysis was performed based on the effective signal-to-interference ratio (SIR), assuming an interference-limited scenario, which is typically a valid assumption in SDMA-based systems. It was shown that the limiting distribution of the effective SIR is of the Frechet type. Surprisingly, the corresponding scaling laws were found to follow $epsilonlog K$ with $0<epsilon<1$, rather than the conventional $loglog K$ form. Inspired by this difference between the scaling law forms, in this paper a systematic approach is developed to derive asymptotic throughput and scaling laws based on signal-to-interference-noise ratio (SINR) by utilizing extreme value theory. The convergence of the limiting distribution of the effective SINR to the Gumbel type is established. The resulting scaling law is found to be governed by the conventional $loglog K$ form. These novel results are validated by simulation results. The comparison of SIR and SINR-based analysis suggests that the SIR-based analysis is more computationally efficient for SDMA-based systems and it captures the asymptotic system performance with higher fidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا