ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Beamforming and Adaptive RF Chain Activation for Uplink Cell-Free Millimeter-Wave Massive MIMO Systems

175   0   0.0 ( 0 )
 نشر من قبل Kyungchun Lee Prof.
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we investigate hybrid analog-digital beamforming (HBF) architectures for uplink cell-free (CF) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. {We first propose two HBF schemes, namely, decentralized HBF (D-HBF) and semi-centralized HBF (SC-HBF). In the former, both the digital and analog beamformers are generated independently at each AP based on the local channel state information (CSI). In contrast, in the latter, only the digital beamformer is obtained locally at the AP, whereas the analog beamforming matrix is generated at the central processing unit (CPU) based on the global CSI received from all APs. We show that the analog beamformers generated in these two HBF schemes provide approximately the same achievable rates despite the lower complexity of D-HBF and its lack of CSI requirement.} Furthermore, to reduce the power consumption, we propose a novel adaptive radio frequency (RF) chain-activation (ARFA) scheme, which dynamically activates/deactivates RF chains and their connected analog-to-digital converters (ADCs) and phase shifters (PSs) at the APs based on the CSI. For the activation of RF chains, low-complexity algorithms are proposed, which can achieve significant improvement in energy efficiency (EE) with only a marginal loss in the total achievable rate.

قيم البحث

اقرأ أيضاً

Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.
Millimeter-wave (mm-wave) is a promising technique to enhance the network capacity and coverage of next-generation (5G) based on utilizing a great number of available spectrum resources in mobile communication. Improving the 5G network requires enhan cing and employing mm-wave beamforming channel propagation characteristics. To achieve high data rates, system performance remains a challenge given the impact of propagation channels in mm-wave that is insufficient in both path loss, delay spread, and penetration loss. Additional challenges arise due to high cost and energy consumption, which require combining both analog and digital beamforming (hybrid beamforming) to reduce the number of radio frequency (RF) chains. In this paper, the distributed powers in the small cell to suppress path loss by specifying a considerable power and controlling the distributed power to reduce the high cost and energy consumption was proposed. The hybrid beamforming in mm-wave exploits a large bandwidth which reduces the large path loss in Rayleigh fading channel. Also, the trade-off between the energy consumption of RF chains and cost efficiency depends on reducing the number of RF chains and the distributed number of users. This paper finds that hybrid beamforming for massive multiple-input multiple-output (MIMO) systems constitute a promising platform for advancing and capitalizing on 5G networks
In this paper, we investigate the performance of cell-free massive MIMO systems with massive connectivity. With the generalized approximate message passing (GAMP) algorithm, we obtain the minimum mean-squared error (MMSE) estimate of the effective ch annel coefficients from all users to all access points (APs) in order to perform joint user activity detection and channel estimation. Subsequently, using the decoupling properties of MMSE estimation for large linear systems and state evolution equations of the GAMP algorithm, we obtain the variances of both the estimated channel coefficients and the corresponding channel estimation error. Finally, we study the achievable uplink rates with zero-forcing (ZF) detector at the central processing unit (CPU) of the cell-free massive MIMO system. With numerical results, we analyze the impact of the number of pilots used for joint activity detection and channel estimation, the number of APs, and signal-to-noise ratio (SNR) on the achievable rates.
We consider a cell-free hybrid massive multiple-input multiple-output (MIMO) system with $K$ users and $M$ access points (APs), each with $N_a$ antennas and $N_r< N_a$ radio frequency (RF) chains. When $Kll M{N_a}$, efficient uplink channel estimatio n and data detection with reduced number of pilots can be performed based on low-rank matrix completion. However, such a scheme requires the central processing unit (CPU) to collect received signals from all APs, which may enable the CPU to infer the private information of user locations. We therefore develop and analyze privacy-preserving channel estimation schemes under the framework of differential privacy (DP). As the key ingredient of the channel estimator, two joint differentially private noisy matrix completion algorithms based respectively on Frank-Wolfe iteration and singular value decomposition are presented. We provide an analysis on the tradeoff between the privacy and the channel estimation error. In particular, we show that the estimation error can be mitigated while maintaining the same privacy level by increasing the payload size with fixed pilot size; and the scaling laws of both the privacy-induced and privacy-independent error components in terms of payload size are characterized. Simulation results are provided to further demonstrate the tradeoff between privacy and channel estimation performance.
This paper investigates the hybrid precoding design for millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with finite-alphabet inputs. The mmWave MIMO system employs partially-connected hybrid precoding architecture with dynamic subarrays, where each radio frequency (RF) chain is connected to a dynamic subset of antennas. We consider the design of analog and digital precoders utilizing statistical and/or mixed channel state information (CSI), which involve solving an extremely difficult problem in theory: First, designing the optimal partition of antennas over RF chains is a combinatorial optimization problem, whose optimal solution requires an exhaustive search over all antenna partitioning solutions; Second, the average mutual information under mmWave MIMO channels lacks closed-form expression and involves prohibitive computational burden; Third, the hybrid precoding problem with given partition of antennas is nonconvex with respect to the analog and digital precoders. To address these issues, this study first presents a simple criterion and the corresponding low complexity algorithm to design the optimal partition of antennas using statistical CSI. Then it derives the lower bound and its approximation for the average mutual information, in which the computational complexity is greatly reduced compared to calculating the average mutual information directly. In addition, it also shows that the lower bound with a constant shift offers a very accurate approximation to the average mutual information. This paper further proposes utilizing the lower bound approximation as a low-complexity and accurate alternative for developing a manifold-based gradient ascent algorithm to find near optimal analog and digital precoders. Several numerical results are provided to show that our proposed algorithm outperforms existing hybrid precoding algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا