ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive MU-MIMO-OFDM Uplink with Hardware Impairments: Modeling and Analysis

275   0   0.0 ( 0 )
 نشر من قبل Sven Jacobsson
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of hardware impairments at the base station (BS) of an orthogonal frequency-division multiplexing (OFDM)-based massive multiuser (MU) multiple-input multiple-output (MIMO) uplink system. We leverage Bussgangs theorem to develop accurate models for the distortions caused by nonlinear low-noise amplifiers, local oscillators with phase noise, and oversampling finite-resolution analog-to-digital converters. By combining the individual effects of these hardware models, we obtain a composite model for the BS-side distortion caused by nonideal hardware that takes into account its inherent correlation in time, frequency, and across antennas. We use this composite model to analyze the impact of BS-side hardware impairments on the performance of realistic massive MU-MIMO-OFDM uplink systems.



قيم البحث

اقرأ أيضاً

In this paper, we study how to efficiently and reliably detect active devices and estimate their channels in a multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) based grant-free non-orthogonal multiple access (NO MA) system to enable massive machine-type communications (mMTC). First, by exploiting the correlation of the channel frequency responses in narrow-band mMTC, we propose a block-wise linear channel model. Specifically, the continuous OFDM subcarriers in the narrow-band are divided into several sub-blocks and a linear function with only two variables (mean and slope) is used to approximate the frequency-selective channel in each sub-block. This significantly reduces the number of variables to be determined in channel estimation and the sub-block number can be adjusted to reliably compensate the channel frequency-selectivity. Second, we formulate the joint active device detection and channel estimation in the block-wise linear system as a Bayesian inference problem. By exploiting the block-sparsity of the channel matrix, we develop an efficient turbo message passing (Turbo-MP) algorithm to resolve the Bayesian inference problem with near-linear complexity. We further incorporate machine learning approaches into Turbo-MP to learn unknown prior parameters. Numerical results demonstrate the superior performance of the proposed algorithm over state-of-the-art algorithms.
Massive multiple-input multiple-output (MIMO) is a key technology for improving the spectral and energy efficiency in 5G-and-beyond wireless networks. For a tractable analysis, most of the previous works on Massive MIMO have been focused on the syste m performance with complex Gaussian channel impulse responses under rich-scattering environments. In contrast, this paper investigates the uplink ergodic spectral efficiency (SE) of each user under the double scattering channel model. We derive a closed-form expression of the uplink ergodic SE by exploiting the maximum ratio (MR) combining technique based on imperfect channel state information. We further study the asymptotic SE behaviors as a function of the number of antennas at each base station (BS) and the number of scatterers available at each radio channel. We then formulate and solve a total energy optimization problem for the uplink data transmission that aims at simultaneously satisfying the required SEs from all the users with limited data power resource. Notably, our proposed algorithms can cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of the closed-form ergodic SE over Monte-Carlo simulations. Besides, the system can still provide the required SEs to many users even under congestion.
88 - Zhe Xing , Rui Wang , Jun Wu 2020
Intelligent reflecting surface (IRS) is envisioned as a promising hardware solution to hardware cost and energy consumption in the fifth-generation (5G) mobile communication network. It exhibits great advantages in enhancing data transmission, but ma y suffer from performance degradation caused by inherent hardware impairment (HWI). For analysing the achievable rate (ACR) and optimizing the phase shifts in the IRS-aided wireless communication system with HWI, we consider that the HWI appears at both the IRS and the signal transceivers. On this foundation, first, we derive the closed-form expression of the average ACR and the IRS utility. Then, we formulate optimization problems to optimize the IRS phase shifts by maximizing the signal-to-noise ratio (SNR) at the receiver side, and obtain the solution by transforming non-convex problems into semidefinite programming (SDP) problems. Subsequently, we compare the IRS with the conventional decode-and-forward (DF) relay in terms of the ACR and the utility. Finally, we carry out simulations to verify the theoretical analysis, and evaluate the impact of the channel estimation errors and residual phase noises on the optimization performance. Our results reveal that the HWI reduces the ACR and the IRS utility, and begets more serious performance degradation with more reflecting elements. Although the HWI has an impact on the IRS, it still leaves opportunities for the IRS to surpass the conventional DF relay, when the number of reflecting elements is large enough or the transmitting power is sufficiently high.
We focus on the realistic maximization of the uplink minimum signal-to-interference-plus-noise ratio (SINR) of a general multiple-input single-output (MISO) system assisted by an intelligent reflecting surface (IRS) in the large system limit accounti ng for HIs. In particular, we introduce the HIs at both the IRS (IRS-HIs) and the transceiver HIs (AT-HIs), usually neglected despite their inevitable impact. Specifically, the deterministic equivalent analysis enables the derivation of the asymptotic weighted maximum-minimum SINR with HIs by jointly optimizing the HIs-aware receiver, the transmit power, and the reflect beamforming matrix (RBM). Notably, we obtain the optimal power allocation and reflect beamforming matrix with low overhead instead of their frequent necessary computation in conventional MIMO systems based on the instantaneous channel information. Monte Carlo simulations verify the analytical results which show the insightful interplay among the key parameters and the degradation of the performance due to HIs.
This paper proposes a stochastic geometry framework to analyze the SINR and rate performance in a large-scale uplink massive MIMO network. Based on the model, expressions are derived for spatial average SINR distributions over user and base station d istributions with maximum ratio combining (MRC) and zero-forcing (ZF) receivers. We show that using massive MIMO, the uplink SINR in certain urban marco-cell scenarios is limited by interference. In the interference-limited regime, the results reveal that for MRC receivers, a super-linear (polynomial) scaling law between the number of base station antennas and scheduled users per cell preserves the uplink SIR distribution, while a linear scaling applies to ZF receivers. ZF receivers are shown to outperform MRC receivers in the SIR coverage, and the performance gap is quantified in terms of the difference in the number of antennas to achieve the same SIR distribution. Numerical results verify the analysis. It is found that the optimal compensation fraction in fractional power control to optimize rate is generally different for MRC and ZF receivers. Besides, simulations show that the scaling results derived from the proposed framework apply to the networks where base stations are distributed according to a hexagonal lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا