ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive low-rank approximation and denoised Monte-Carlo approach for high-dimensional Lindblad equations

84   0   0.0 ( 0 )
 نشر من قبل Pierre Rouchon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a twofold contribution to the numerical simulation of Lindblad equations. First, an adaptive numerical approach to approximate Lindblad equations using low-rank dynamics is described: a deterministic low-rank approximation of the density operator is computed, and its rank is adjusted dynamically, using an on-the-fly estimator of the error committed when reducing the dimension. On the other hand, when the intrinsic dimension of the Lindblad equation is too high to allow for such a deterministic approximation, we combine classical ensemble averages of quantum Monte Carlo trajectories and a denoising technique. Specifically, a variance reduction method based upon the consideration of a low-rank dynamics as a control variate is developed. Numerical tests for quantum collapse and revivals show the efficiency of each approach, along with the complementarity of the two approaches.



قيم البحث

اقرأ أيضاً

We provide a representation result of parabolic semi-linear PD-Es, with polynomial nonlinearity, by branching diffusion processes. We extend the classical representation for KPP equations, introduced by Skorokhod (1964), Watanabe (1965) and McKean (1 975), by allowing for polynomial nonlinearity in the pair $(u, Du)$, where $u$ is the solution of the PDE with space gradient $Du$. Similar to the previous literature, our result requires a non-explosion condition which restrict to small maturity or small nonlinearity of the PDE. Our main ingredient is the automatic differentiation technique as in Henry Labordere, Tan and Touzi (2015), based on the Malliavin integration by parts, which allows to account for the nonlinearities in the gradient. As a consequence, the particles of our branching diffusion are marked by the nature of the nonlinearity. This new representation has very important numerical implications as it is suitable for Monte Carlo simulation. Indeed, this provides the first numerical method for high dimensional nonlinear PDEs with error estimate induced by the dimension-free Central limit theorem. The complexity is also easily seen to be of the order of the squared dimension. The final section of this paper illustrates the efficiency of the algorithm by some high dimensional numerical experiments.
We study an algorithm which has been proposed by Chinesta et al. to solve high-dimensional partial differential equations. The idea is to represent the solution as a sum of tensor products and to compute iteratively the terms of this sum. This algori thm is related to the so-called greedy algorithm introduced by Temlyakov. In this paper, we investigate the application of the greedy algorithm in finance and more precisely to the option pricing problem. We approximate the solution to the Black-Scholes equation and we propose a variance reduction method. In numerical experiments, we obtain results for up to 10 underlyings. Besides, the proposed variance reduction method permits an important reduction of the variance in comparison with a classical Monte Carlo method.
A procedure for the numerical approximation of high-dimensional Hamilton-Jacobi-Bellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocat ion approximation of the PDE dynamics, and an iterative method for the nonlinear HJB equation associated to the feedback synthesis. The latter is known as the Successive Galerkin Approximation. It can also be interpreted as Newton iteration for the HJB equation. At every step, the associated linear Generalized HJB equation is approximated via a separable polynomial approximation ansatz. Stabilizing feedback controls are obtained from solutions to the HJB equations for systems of dimension up to fourteen.
We propose an approach for the synthesis of robust and optimal feedback controllers for nonlinear PDEs. Our approach considers the approximation of infinite-dimensional control systems by a pseudospectral collocation method, leading to high-dimension al nonlinear dynamics. For the reduced-order model, we construct a robust feedback control based on the $cH_{infty}$ control method, which requires the solution of an associated high-dimensional Hamilton-Jacobi-Isaacs nonlinear PDE. The dimensionality of the Isaacs PDE is tackled by means of a separable representation of the control system, and a polynomial approximation ansatz for the corresponding value function. Our method proves to be effective for the robust stabilization of nonlinear dynamics up to dimension $dapprox 12$. We assess the robustness and optimality features of our design over a class of nonlinear parabolic PDEs, including nonlinear advection and reaction terms. The proposed design yields a feedback controller achieving optimal stabilization and disturbance rejection properties, along with providing a modelling framework for the robust control of PDEs under parametric uncertainties.
The efficient numerical integration of large-scale matrix differential equations is a topical problem in numerical analysis and of great importance in many applications. Standard numerical methods applied to such problems require an unduly amount of computing time and memory, in general. Based on a dynamical low-rank approximation of the solution, a new splitting integrator is proposed for a quite general class of stiff matrix differential equations. This class comprises differential Lyapunov and differential Riccati equations that arise from spatial discretizations of partial differential equations. The proposed integrator handles stiffness in an efficient way, and it preserves the symmetry and positive semidefiniteness of solutions of differential Lyapunov equations. Numerical examples that illustrate the benefits of this new method are given. In particular, numerical results for the efficient simulation of the weather phenomenon El Ni~no are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا