ﻻ يوجد ملخص باللغة العربية
We present a detailed study of magnetoresistance r{ho}xx(H), Hall effect r{ho}xy(H), and electrolyte gating effect in thin (<100 nm) exfoliated crystals of WTe2. We observe quantum oscillations in H of both r{ho}xx(H) and r{ho}xy(H), and identify four oscillation frequencies consistent with previous reports in thick crystals. r{ho}xy(H) is linear in H at low H consistent with near-perfect electron-hole compensation, however becomes nonlinear and changes sign with increasing H, implying a breakdown of compensation. A field-dependent ratio of carrier concentrations p/n can consistently explain r{ho}xx(H) and r{ho}xy(H) within a two-fluid model. We also employ an electrolytic gate to highly electron-dope WTe2 with Li. The non-saturating r{ho}xx(H) persists to H = 14 T with magnetoresistance ratio exceeding 2 x 104 %, even with significant deviation from perfect electron-hole compensation (p/n = 0.84), where the two-fluid model predicts a saturating r{ho}xx(H). Our results suggest electron-hole compensation is not the mechanism for extremely large magnetoresistance in WTe2, other alternative explanations need to be considered.
Since the discovery of extremely large non-saturating magnetoresistance (MR) in WTe2, much effort has been devoted to understanding the underlying mechanism, which is still under debate. Here, we explicitly identify the dominant physical origin of th
We report the detailed electronic structure of WTe$_2$ by high resolution angle-resolved photoemission spectroscopy. Unlike the simple one electron plus one hole pocket type of Fermi surface topology reported before, we resolved a rather complicated
The silver chalcogenides provide a striking example of the benefits of imperfection. Nanothreads of excess silver cause distortions in the current flow that yield a linear and non-saturating transverse magnetoresistance (MR). Associated with the larg
In this work, the magneto-resistance (MR) of ultra-thin WTe2/BN heterostructures far away from electron-hole equilibrium is measured. The change of MR of such devices is found to be determined largely by a single tunable parameter, i.e. the amount of
The Weyl semimetal WTe2 and MoTe2 show great potential in generating large spin currents since they possess topologically-protected spin-polarized states and can carry a very large current density. In addition, the intrinsic noncentrosymmetry of WTe2