ﻻ يوجد ملخص باللغة العربية
The Weyl semimetal WTe2 and MoTe2 show great potential in generating large spin currents since they possess topologically-protected spin-polarized states and can carry a very large current density. In addition, the intrinsic noncentrosymmetry of WTe2 and MoTe2 endows with a unique property of crystal symmetry-controlled spin-orbit torques. An important question to be answered for developing spintronic devices is how spins relax in WTe2 and MoTe2. Here, we report a room-temperature spin relaxation time of 1.2 ns (0.4 ns) in WTe2 (MoTe2) thin film using the time-resolved Kerr rotation (TRKR). Based on ab initio calculation, we identify a mechanism of long-lived spin polarization resulting from a large spin splitting around the bottom of the conduction band, low electron-hole recombination rate and suppression of backscattering required by time-reversal and lattice symmetry operation. In addition, we find the spin polarization is firmly pinned along the strong internal out-of-plane magnetic field induced by large spin splitting. Our work provides an insight into the physical origin of long-lived spin polarization in Weyl semimetals which could be useful to manipulate spins for a long time at room temperature.
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanosca
Time-resolved magneto-optics was used to study spin-lattice relaxation dynamics in thin epitaxial La0.7Sr0.3MnO3 films. Two distinct recovery regimes of the ferromagnetic order can be resolved upon photoexcitation, which manifest themselves by two di
Layered iridates have been the subject of intense scrutiny on account of their unusually strong spin-orbit coupling, which opens up a narrow gap in a material that would otherwise be a metal. This insulating state is very sensitive to external pertur
Insulating uniaxial room-temperature ferromagnets are a prerequisite for commonplace spin wave-based devices, the obstacle in contemporary ferromagnets being the coupling of ferromagnetism with large conductivity. We show that the uniaxial $A^{1+2x}$
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-bas