ترغب بنشر مسار تعليمي؟ اضغط هنا

Room-temperature nanoseconds spin relaxation in WTe2 and MoTe2 thin films

134   0   0.0 ( 0 )
 نشر من قبل Hyunsoo Yang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Weyl semimetal WTe2 and MoTe2 show great potential in generating large spin currents since they possess topologically-protected spin-polarized states and can carry a very large current density. In addition, the intrinsic noncentrosymmetry of WTe2 and MoTe2 endows with a unique property of crystal symmetry-controlled spin-orbit torques. An important question to be answered for developing spintronic devices is how spins relax in WTe2 and MoTe2. Here, we report a room-temperature spin relaxation time of 1.2 ns (0.4 ns) in WTe2 (MoTe2) thin film using the time-resolved Kerr rotation (TRKR). Based on ab initio calculation, we identify a mechanism of long-lived spin polarization resulting from a large spin splitting around the bottom of the conduction band, low electron-hole recombination rate and suppression of backscattering required by time-reversal and lattice symmetry operation. In addition, we find the spin polarization is firmly pinned along the strong internal out-of-plane magnetic field induced by large spin splitting. Our work provides an insight into the physical origin of long-lived spin polarization in Weyl semimetals which could be useful to manipulate spins for a long time at room temperature.

قيم البحث

اقرأ أيضاً

Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanosca le domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages >=20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.
Time-resolved magneto-optics was used to study spin-lattice relaxation dynamics in thin epitaxial La0.7Sr0.3MnO3 films. Two distinct recovery regimes of the ferromagnetic order can be resolved upon photoexcitation, which manifest themselves by two di fferent relaxation times. A pump pulse energy independent spin-lattice relaxation time can be deduced. Due to a weak spin-orbit coupling in manganites this spin-lattice relaxation time is much longer than in ferromagnetic metals. Heat flow into the substrate sets the ultimate recovery speed of the ferromagnetic order and allows for a determination of heat diffusion properties of manganite films.
Layered iridates have been the subject of intense scrutiny on account of their unusually strong spin-orbit coupling, which opens up a narrow gap in a material that would otherwise be a metal. This insulating state is very sensitive to external pertur bations. Here, we show that vertical compression at the nanoscale, delivered using the tip of a standard scanning probe microscope, is capable of inducing a five orders of magnitude change in the room temperature resistivity of Sr2IrO4. The extreme sensitivity of the electronic structure to anisotropic deformations opens up a new angle of interest on this material, and the giant and fully reversible perpendicular piezoresistance makes iridates a promising material for room temperature piezotronic devices.
Insulating uniaxial room-temperature ferromagnets are a prerequisite for commonplace spin wave-based devices, the obstacle in contemporary ferromagnets being the coupling of ferromagnetism with large conductivity. We show that the uniaxial $A^{1+2x}$ Ti$^{4+}$$_{1-x}$O$_3$ (ATO), $A=$Ni$^{2+}$,Co$^{2+}$ and $0.6<x leq 1$, thin films are electrically insulating ferromagnets already at room-temperature. The octahedra network of the ATO and ilmenite structures are similar yet different octahedra-filling proved to be a route to switch from the antiferromagnetic to ferromagnetic regime. Octahedra can continuously be filled up to $x=1$, or vacated $(-0.24<x<0)$ in the ATO structure. TiO-layers, which separate the ferromagnetic (Ni,Co)O-layers and intermediate the antiferromagnetic coupling between the ferromagnetic layers in the NiTiO$_3$ and CoTiO$_3$ ilmenites, can continuously be replaced by (Ni,Co)O-layers to convert the ATO-films to ferromagnetic insulator with abundant direct cation interactions.
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-bas ed multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach about 2 mJ/m2 in the case of the Ir/Co/Pt multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged magnetic bubble-like domains in these multilayers. The study of their behavir in magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the Dzyaloshinsskii-Moriya interaction. This discoevry of stable skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا