ﻻ يوجد ملخص باللغة العربية
We study the transport properties in SrVO3/LaVO3 (SVO/LVO) superlattices deposited on SrTiO3 (STO) substrates. We show that the electronic conduction occurs in the metallic LVO layers with a galvanomagnetism typical of a 2D Fermi surface. In addition, a Kondo-like component appears in both the thermal variation of resistivity and the magnetoresistance. Surprisingly, in this system where the STO interface does not contribute to the measured conduction, the Kondo correction is strongly anisotropic. We show that the growth temperature allows a direct control of this contribution. Finally, the key role of vanadium mixed valency stabilized by oxygen vacancies is enlightened.
We report on the growth and properties of high quality bicolor oxide superlattices, composed of two perovskites out of BaTiO3, CaTiO3, and SrTiO3. The artificially grown superlattices are structurally unique and have a macroscopically homogeneous pha
A series of superlattices composed of ferromagnetic La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO) and ferroelectric/paraelectric Ba$_{1-x}$Sr$_x$TiO$_3$ (0$leq $x$leq $1) were deposited on SrTiO$_3$ substrates using the pulsed laser deposition. Films of epitaxi
Topological polar vortices that are the electric analogues of magnetic objects, present great potential in applications of future nanoelectronics due to their nanometer size, anomalous dielectric response, and chirality. To enable the functionalities
We construct ferroelectric (LuFeO3)m/(LuFe2O4) superlattices with varying index m to study the effect of confinement on topological defects. We observe a thickness-dependent transition from neutral to charged domain walls and the emergence of fractio
Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion