ﻻ يوجد ملخص باللغة العربية
Topological polar vortices that are the electric analogues of magnetic objects, present great potential in applications of future nanoelectronics due to their nanometer size, anomalous dielectric response, and chirality. To enable the functionalities, it is prerequisite to manipulate the polar states and chirality by using external stimuli. Here, we probe the evolutions of polar state and chirality of polar vortices in PbTiO3/SrTiO3 superlattices under electric field by using atomically resolved in situ scanning transmission electron microscopy and phase-field simulations. We find that the adjacent clockwise and counterclockwise vortex usually have opposite chirality. The phase-field simulations suggest that the rotation reversal or axial polarization switching can lead to the chirality change. Guided by which, we experimentally validate that the vortex rotation direction can be changed by applying and subsequently removing of electric fields, offering a potential strategy to manipulate the vortex chirality. The revealed details of dynamic behavior for individual polar vortices at atomic scale and the proposed strategy for chirality manipulation provide fundamentals for future device applications.
We report on the growth and properties of high quality bicolor oxide superlattices, composed of two perovskites out of BaTiO3, CaTiO3, and SrTiO3. The artificially grown superlattices are structurally unique and have a macroscopically homogeneous pha
We study the transport properties in SrVO3/LaVO3 (SVO/LVO) superlattices deposited on SrTiO3 (STO) substrates. We show that the electronic conduction occurs in the metallic LVO layers with a galvanomagnetism typical of a 2D Fermi surface. In addition
Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion
We construct ferroelectric (LuFeO3)m/(LuFe2O4) superlattices with varying index m to study the effect of confinement on topological defects. We observe a thickness-dependent transition from neutral to charged domain walls and the emergence of fractio
Topological phases such as polar skyrmions have been a fertile playground for ferroelectric oxide superlattices, with exotic physical phenomena such as negative capacitance. Herein, using phase-field simulations, we demonstrate the local control of t