ﻻ يوجد ملخص باللغة العربية
A series of superlattices composed of ferromagnetic La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO) and ferroelectric/paraelectric Ba$_{1-x}$Sr$_x$TiO$_3$ (0$leq $x$leq $1) were deposited on SrTiO$_3$ substrates using the pulsed laser deposition. Films of epitaxial nature comprised of spherical mounds having uniform size are obtained. Magnetotransport properties of the films reveal a ferromagnetic Curie temperature in the range of 145-158 K and negative magnetoresistance as high as 30%, depending on the type of ferroelectric layers employed for their growth (QTR{it}{i.e.} QTR{it}{x} value). Ferroelectricity at temperatures ranging from 55 K to 105 K is also observed, depending on the barium content. More importantly, the multiferroic nature of the film is determined by the appearance of negative magnetocapacitance, which was found to be maximum around the ferroelectric transition temperature (3% per QTR{it}{tesla}). These results are understood based on the role of the ferroelectric/paraelectric layers and strains in inducing the multiferroism.
A microscopic model Hamiltonian for the ferroelectric field effect is introduced for the study of oxide heterostructures with ferroelectric components. The long-range Coulomb interaction is incorporated as an electrostatic potential, solved self-cons
Ferroelectric field-effect doping has emerged as a powerful approach to manipulate the ground state of correlated oxides, opening the door to a new class of field-effect devices. However, this potential is not fully exploited so far, since the size o
A series of epitaxial (LaVO3)6m(SrVO3)m superlattices having the same nominal composition as La6/7Sr1/7VO3, a Mott-Hubbard insulator, were grown with pulsed-laser deposition on [001]-oriented SrTiO3 substrates, and their superlattice period was varie
The electronic properties of SrRuO3/LaAlO3 (SRO/LAO) superlattices with different interlayer thicknesses of SRO layers were studied. As the thickness of SRO layers is reduced, the superlattices exhibit a metal-insulator transition implying transforma
Contribution of d-electron to ferroelectricity of type-II multiferroics causes strong magneto-electric coupling and distinguishes them from the conventional type-I multiferroics. However, their therein polarization is too small because the ferroelect